Exercise session problems

Problem 1.

Use the Lagrange multiplier method to find candidates for the maximum and/or minimum:

- a) $\max / \min f(x,y) = 3x y$ when $x^2 + 4y^2 = 37$ b) $\max / \min f(x,y) = x^2 + 4y^2$ when 3x y = 37
- c) $\max / \min f(x,y) = xy \text{ when } x^2 + 4y^2 = 8$
- d) $\max / \min f(x,y) = 4x^2 + 9y^2$ when xy = 6
- e) $\max f(x,y) = x^2y^2 x^2 y^2 + 16$ when $x^2 + y^2 = 16$ f) $\max f(x,y) = x^2y^2 x^2 y^2 + 16$ when xy = 4

Problem 2.

Find the maximum/minimum, if it exists:

- a) $\max / \min f(x,y) = 3x y$ when $x^2 + 4y^2 = 37$
 - b) max / min $f(x,y) = x^2 + 4y^2$ when 3x y = 37
- c) $\max / \min f(x,y) = xy \text{ when } x^2 + 4y^2 = 8$
- d) $\max / \min f(x,y) = 4x^2 + 9y^2$ when xy = 6
- e) $\max f(x,y) = x^2y^2 x^2 y^2 + 16$ when $x^2 + y^2 = 16$ f) $\max f(x,y) = x^2y^2 x^2 y^2 + 16$ when xy = 4

Problem 3.

Solve the Lagrange problem: $\max U(x,y) = 0.3 \ln(x-3) + 0.7 \ln(y-2)$ when 12x + 5y = 60.

Problem 4.

Exam MET1180 (December 2015) Exercise 5

Consider the level curve g(x,y) = 0, where g is the function $g(x,y) = x^3 + xy + y^2$.

- a) Find all points on the level curve with x=-2, and determine the tangent in each of these points.
- b) Find the maximum value of f(x,y) = x under the constraint $x^3 + xy + y^2 = 0$.

Problem 5.

Exam MET1180 (June 2016) Exercise 5

Consider the Lagrange problem max $/ \min f(x,y) = x + 2y - \sqrt{36 - x^2 - 4y^2}$ when $x^2 + 4y^2 = 36$.

- a) Find the points on the level curve $x^2 + 4y^2 = 36$ where the tangent has slope y' = 1/2.
- b) Make a sketch of $D = \{(x,y) : x^2 + 4y^2 = 36\}$. Is D bounded? What kind of curve is this?
- c) Solve the Lagrange problem and find the maximum- and minimum value.
- d) Solve the new optimization problem we get when we change the constraint to $x^2 + 4y^2 \le 36$.

Problem 6.

Difficult!

Solve the Lagrange problem $\max f(x,y) = x + y$ when $x^3 - 3xy + y^3 = 0$. You can assume that the problem has a maximum.

Textbook [E]: Eriksen, Matematikk for økonomi og finans

Exercise book [O]: Eriksen, Matematikk for økonomi og finans - Oppgaver og Løsningsforslag

Exercises: [E] 7.6.3 - 7.6.6 Solution manual: See [O] Ch. 7.6

Optional: Exercises from the Norwegian textbook

Answers to the exercise session problems

Problem 1.

a) $(x,y;\lambda) = (6, -1/2; 1/4), (-6,1/2; -1/4)$

b) $(x,y;\lambda) = (12, -1;8)$

c) $(x,y;\lambda) = (2,1;1/4), (-2,-1;1/4), (2,-1;-1/4), (-2,1;-1/4)$

d) $(x,y;\lambda) = (3,2;12), (-3,-2;12)$

e) $(x,y;\lambda) = (\pm 2\sqrt{2}, \pm 2\sqrt{2};7), (\pm 4,0;-1), (0,\pm 4;-1)$

f) $(x,y;\lambda) = (2,2;-2), (-2,-2;-2)$

Problem 2.

a) $f_{\text{max}} = 37/2$, $f_{\text{min}} = -37/2$

b) $f_{\min} = 148$ (does not have a maximum)

c) $f_{\text{max}} = 2$, $f_{\text{min}} = -2$

d) $f_{\min} = 72$ (does not have a maximum)

e) $f_{\text{max}} = 64, f_{\text{min}} = 0$

f) $f_{\text{max}} = 24$ (does not have a minimum)

Problem 3.

We find the maximum point (x,y) = (67/20, 99/25), maximum value $f_{\text{max}} = 1.7 \ln(1.4) - 0.6 \ln(2)$ with $\lambda = 1/14$.

2

Problem 4.

a) y = -8x/3 - 4/3 i (-2,4) and y = 5x/3 + 4/3 i (-2, -2)

b) $f_{\text{max}} = 1/4$

Problem 5.

a) $(3\sqrt{2}, -3\sqrt{2}/2), (-3\sqrt{2}, 3\sqrt{2}/2)$

b) Yes, ellipse with half axes a=6 and b=3 with center (0,0)

c) $f_{\text{max}} = 6\sqrt{2}, f_{\text{min}} = -6\sqrt{2}$

d) $f_{\text{max}} = 6\sqrt{2}, f_{\text{min}} = -6\sqrt{3}$

Problem 6.

 $f_{\text{max}} = 3$