
Exercises for Lecture 46 EBA1180

Exercise session problems

Problem 1.

Solve the optimization problem. Illustrate the set of admissible points D, along with suitable level curves for f in
the same coordinate system:

max /min f(x,y) = x2 + y2 when x+ y = 2a)

max /min f(x,y) = 4x2 + 9y2 when 2x+ 3y = 6b)

max /min f(x,y) = y when x2 − y2 = 1c)

Problem 2.

Solve the optimization problem: max /min f(x,y) = x3 + 3xy + y3 when xy = 1

Problem 3.

Consider the curve C given by the equation y(x2 + y2) = 2(x2 − y2).

Find all points on the curve C where y = −1.a)

Find the tangent of C in each point where y = −1.b)

Solve the optimization problem: max /min f(x,y) = y when y(x2 + y2) = 2(x2 − y2)c)

Problem 4.

Consider the function defined by f(x,y) = 1 + x2 + y2 + x2y2.

Find all stationary points for f .a)

Compute the Hessian of f , and use this to classify the stationary points.b)

Determine whether f has global maximum- or minimum values.c)

Solve the Lagrange problem: max f(x,y) = x2 + y2 + x2y2 when x2 + 2y2 = 5d)

Problem 5.

Consider the Lagrange problem max /min f(x,y) = x2 − xy + y2 when x+ y = 2.

Use the Lagrange multiplier method to find candidates (x,y;λ) for the maximum and minimum.a)

Write the function f(x,y) by using that (x + y)2 = 22 = 4 in all admissible points (i.e., all points that
satisfy the constraint). Use the Lagrange multiplier method to find candidates (x,y;λ) for the maximum
and minimum in this new Lagrange problem.

b)

Solve the constraint for one of the variables, and use this to simplify the expression for f(x,y) to a function
in one variable. Solve the optimization problem you have now.

c)

Compare the previous answers and discuss the connection between the three methods. Then solve the
optimization problem.

d)
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Answers to exercise session problems

Problem 1.

fmin = 2, no maximum value.a)

fmin = 18, no maximum value.b)

No maximum nor minimum value.c)

Problem 2.

Neither maximum nor minimum exist.

Problem 3.

(±
√
1/3,− 1)a)

y = 2∓ 3
√
3xb)

fmin = −2, no maximum valuec)

Problem 4.

(0,0)a)

local minimum pointsb)

fmin = 1, no maximum valuec)

fmax = 7d)

Problem 5.

(1,1; 1)a)

(1,1;−3)b)

(1,1)c)

fmin = 1, no maximum value.d)
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