Exercise session problems

Problem 1.

Consider the optimization problem

 $\max / \min f(x,y) = x^2 - 4x + y^2 - 2y + 6$ when $0 \le x \le 4, \ 0 \le y \le 3$

- a) Sketch the set D of admissible points in the xy-coordinate system.
- b) Find any stationary points for f in the interior of D, and mark these in the figure.
- c) Describle the level curve f(x,y) = c geometrically, and draw these level curves in the figure when c = 1, c = 2 and c = 5.
- d) Use the figure to find maximum- and minimum points.
- e) Find the maximum and minimum points by calculation, and compare to the points you found above.

Problem 2.

Consider the optimization problem

 $\max / \min f(x,y) = x^2 - 6x + y^2 - 4y + 13$ when $x \ge 0, y \ge 0, 2x + 3y \le 6$

- a) Sketch the set D of admissible points in the xy-coordinate system.
- b) Find any stationary points for f in the interior of D, and mark these in the figure.
- c) Describe the level curve f(x,y) = c geometrically, and draw these level curves in the figure when c = 0, c = 1and c = 4.
- d) Use the figure to find the maximum- and minimum points.
- e) Find the maximum- and minimum points by calculation and compare with the points you found above.

Problem 3.

Find any maximum- and/or minimum points and maximum- and/or minimum values:

- a) $\max / \min f(x,y) = x^2 + 4y^2$ when 3x y = 37
- b) max / min $f(x,y) = x^2 + 4y^2$ when xy = 8
- c) $\max / \min f(x,y) = x^2y^2 x^2 y^2 + 16$ when xy = 4

Problem 4.

Solve the optimization problem: $\max / \min f(x,y) = x^3 + 3xy + y^3$ when xy = 1

Problem 5.

Solve the optimization problem: max $f(x,y) = (x-y)e^{2xy}$ when $0 \le x \le 1, 0 \le y \le 1$

Problem 6.

Consider the level curve g(x,y) = 0, where g is the function $g(x,y) = x^3 + xy + y^2$.

- a) Find all points on the level curve with x = -2, and determine the tangent in each of these points.
- b) Find the maximum value of f(x,y) = x under the constraint $x^3 + xy + y^2 = 0$.

Problem 7.

Consider the curve C with equation $y(x^2 + y^2) = 2(x^2 - y^2)$.

- a) Find all points on the curve C where y = -1.
- b) Find the tangent of C in each point where y = -1.
- c) Solve the optimization problem: max / min f(x,y) = y when $y(x^2 + y^2) = 2(x^2 y^2)$

Problem 8.

Consider the function defined by $f(x,y) = 1 + x^2 + y^2 + x^2y^2$.

- a) Find all stationary points for f.
- b) Calculate the Hessian matrix of f, and use this to classify the stationary points.
- c) Determine whether f has global maximum- or minimum values.
- d) Solve the Lagrange problem: $\max f(x,y) = x^2 + y^2 + x^2y^2$ when $x^2 + 2y^2 = 5$

Problem 9.

Consider the Lagrange problem max $/\min f(x,y) = x + 2y - \sqrt{36 - x^2 - 4y^2}$ when $x^2 + 4y^2 = 36$.

- a) Find the points on the level curve $x^2 + 4y^2 = 36$ where the tangent has slope y' = 1/2.
- b) Make a sketch of $D = \{(x,y) : x^2 + 4y^2 = 36\}$. Is D bounded? What kind of curve is this?
- c) Solve the Lagrange problem and find the maximum- and minimum value.
- d) Solve the new optimization problem we get when we change the constraint to $x^2 + 4y^2 \le 36$.

Answers to the exercise session problems

Problem 1.

- a) Rectangle in the first quadrant with sides 4 and 3.
- b) (2,1)
- c) Circles with center in (2,1) and radius $\sqrt{c-1}$ for c > 1.
- d) Maximum: (0,3),(4,3) and minimum: (2,1)
- e) Maximum: (0,3),(4,3) and minimum: (2,1)

Problem 2.

- a) 90 degree triangle in the first quadrant with sides 3 and 2.
- b) None.
- c) Circles with center in (3,2) and radius \sqrt{c} for c > 0.
- d) Maximum: (0,0) and minimum: Ca (2,0.7)
- e) Maximum: (0,0) and minimum: (27/13,8/13)

Problem 3.

- a) $f_{\min} = 148$ in the point (x,y) = (12, -1), no maximum value.
- b) $f_{\min} = 32$ in the points (x,y) = (4,2), (-4, -2), no maximum value.
- c) $f_{\text{max}} = 24$ in the points (x,y) = (2,2), (-2, -2), no minimum value.

Problem 4.

Neither maximum nor minimum exist.

Problem 5.

 $f_{\rm max} = e/2 \approx 1.359.$

Problem 6.

a) y = -8x/3 - 4/3 in (-2,4) and y = 5x/3 + 4/3 in (-2, -2) b) $f_{\text{max}} = 1/4$

Problem 7.

a) $(\pm \sqrt{1/3}, -1)$

- b) $y = 2 \mp 3\sqrt{3}x$
- c) $f_{\min} = -2$, no maximum value.

Problem 8.

a) (0,0)

- b) local minimum point.
- c) $f_{\min} = 1$, no maximum value.
- d) $f_{\rm max} = 7$

Problem 9.

- a) $(3\sqrt{2}, -3\sqrt{2}/2), (-3\sqrt{2}, 3\sqrt{2}/2)$
- b) Yes, ellipse med half axes a = 6 and b = 3 with center in (0,0)

c)
$$f_{\text{max}} = 6\sqrt{2}, f_{\text{min}} = -6\sqrt{2}$$

d) $f_{\text{max}} = 6\sqrt{2}, f_{\text{min}} = -6\sqrt{3}$