School exam (3h) EBA11802-Mathematics for Data Science

5 May 2023

Solutions

Problem 1

We see that x is a common factor in all terms so $f(x)=x^{4}-7 x^{2}+6 x=x\left(x^{3}-7 x+6\right)$. Then we try and find that $x=1$ is a zero for $x^{3}-7 x+6$, hence $x-1$ is a factor in $x^{3}-7 x+6$. We calculate $\left(x^{3}-7 x+6\right):(x-1)$ by polynomial division:

$$
\begin{aligned}
& \left(\begin{array}{c}
\left.x^{3} \quad-7 x+6\right) \\
-x^{3}+x^{2} \\
x^{2}
\end{array}-7 x\right. \\
& \frac{-x^{2}+x}{-6 x}+6 \\
& \frac{6 x-6}{0}
\end{aligned}
$$

Hence $x^{3}-7 x+6=(x-1)\left(x^{2}+x-6\right)$ and because $x^{2}+x-6=(x-2)(x+3)$ we get $f(x)=x(x-1)(x-2)(x+3)$.

Problem 2

i) The expression for a hyperbola function can be written in the standard form $f(x)=c+\frac{a}{x-b}$ where the horizontal asymptote is $y=100=c$ and the vertical asymptote is $x=30=b$.
Hence $f(40)=100+\frac{a}{40-30}=99$ which gives $a=-10$ and $\underline{\underline{f(x)=100-\frac{10}{x-30}}}$.
ii) A function table should be provided.

Figure 1: The graph of $f(x)$ with asymptotes

Problem 3

i) We write $f(x)=x^{1.5}$ and use the power rule: $f^{\prime}(x)=\underline{\underline{1.5 x^{0.5}}}=\underline{\underline{1.5 \sqrt{x}}}$.
ii) We use the fraction rule: $f^{\prime}(x)=\frac{3(x-1)-(3 x-4) \cdot 1}{(x-1)^{2}}=\frac{1}{(x-1)^{2}}$
iii) We use the chain rule with $u=2 x+3$ and then the power rule and get: $f^{\prime}(x)=2 \cdot 50 \cdot(2 x+3)^{49}=\underline{=100(2 x+3)^{49}}$
iv) A logarithm rule gives $\ln \left(x e^{-x}\right)=\ln (x)-x$ and hence $f(x)=x \cdot \ln (x)-x^{2}$. Then we use the product rule and the power rule and get $f^{\prime}(x)=1 \cdot \ln (x)+x \cdot \frac{1}{x}-2 x=\underline{\underline{\ln (x)-2 x+1}}$

Problem 4

a) The sum of the present values of each of the payments (in millions) is

$$
\underline{\underline{\frac{2}{1.06^{5}}}+\frac{2}{1.06^{6}}+\cdots+\frac{2}{1.06^{n+3}}+\frac{2}{1.06^{n+4}}}
$$

b) We read the geometric series backwards. The first term is $a_{1}=\frac{2}{1.06^{n+4}}$, the multiplication factor is $k=1.06$ and the number of terms is n. It gives the sum

$$
\frac{2}{1.06^{n+4}} \cdot \frac{1.06^{n}-1}{0.06}
$$

$n=20$ gives the present value (in millions)

$$
\frac{2}{1.06^{24}} \cdot \frac{1.06^{20}-1}{0.04}=\underline{\underline{18.17}}
$$

c) If the cash flow continues forever we get the present value

$$
a_{1} \cdot \frac{1}{1-k}=\frac{2}{1.06^{5}} \cdot \frac{1}{1-\frac{1}{1.06}}=\underline{\underline{26.40}}
$$

Here we read the infinite geometric series from left to right with $k=\frac{1}{1.06}$ as multiplication factor.

Problem 5

i) We square each side and get $10-x^{2}=x^{2}-4 x+4$, that is $2 x^{2}-4 x=6$, that is $x^{2}-2 x=3$. We complete the square and get $(x-1)^{2}=4$ which gives the candidate solutions $x=-1$, $x=3$. But $x=-1$ gives the left hand side in the original equation equal to 3 while the right hand side gives -3 . For $x=3$ we get 1 on each side. Hence the only solution is $x=3$.
ii) Here we use a rule for calculating logarithms and get the equation $\ln \frac{x+2}{x} \leqslant 0.1$. Insert both sides into $e^{(-)}$(a strictly increasing function) and get the equivalent inequality $\frac{x+2}{x} \leqslant e^{0.1}$. Subtract $e^{0.1}$ from each side and make a common fraction. It gives

$$
\frac{\left(1-e^{0.1}\right) x+2}{x} \leqslant 0
$$

Because the original inequality is only defined for $x>0$ we get the equivalent inequality $\left(1-e^{0.1}\right) x+2 \leqslant 0$, that is $\left(1-e^{0.1}\right) x \leqslant-2$. We divide with the negative number $\left(1-e^{0.1}\right)$ on each side and get $x \geqslant \frac{2}{e^{0.1}-1} \approx 19.02$.

Problem 6

i) By the chain rule we get that the marginal cost function is

$$
K^{\prime}(x)=\underline{0.05 \cdot K_{0} \cdot e^{0.05 x}}=0.05 \cdot K(x) .
$$

ii) Since the cost function is strictly convex, cost optimum is the solution of the equation $A(x)=K^{\prime}(x)$ where $A(x)=\frac{K(x)}{x}$ is the average unit cost. That is $\frac{K(x)}{x}=0.05 \cdot K(x)$. We divide with $K(x)$ on each side and get $\frac{1}{x}=0.05$, that is $x=\frac{1}{0.05}=\underline{\underline{20}}$.
Optimal unit cost is the unit cost when one produces cost optimum many units. From the equation we get $A(20)=K^{\prime}(20)=0.05 \cdot K_{0} \cdot e^{0.05 \cdot 20}=\underline{\underline{0.05 e \cdot K_{0}} \approx} \underline{\underline{0.1359 \cdot K_{0}}}$.

Problem 7

i) We have $f^{\prime}(x)=\left(16 x^{2}-25\right) / x$. We have $16 x^{2}-25 \leqslant 0$ if and only if $-\frac{5}{4} \leqslant x \leqslant \frac{5}{4}$. But $f(x)$ is only defined for $x>0$ so $f^{\prime}(x) \leqslant 0$ for $0<x \leqslant \frac{5}{4}$ and $f^{\prime}(x) \geqslant 0$ for $x \geqslant \frac{5}{4}$. Hence $f(x)$ is decreasing in the interval $\left\langle 0, \frac{5}{4}\right.$] and increasing in the interval $\left[\frac{5}{4}, \rightarrow\right\rangle$.
ii) We have $f^{\prime \prime}(x)=\left(16 x^{2}+25\right) / x^{2}>0$ for all $x>0$. Hence $\underline{\underline{\underline{f(x)} \text { is convex for all } x>0} \text {. }}$

Problem 8

i) $f(x)$ has stationary points where $f^{\prime}(x)=0$, that is where the tangent is horizontal. In the interval [3, 10] that is at (approximately) $x=4.8$ and $x=7.5$. The statement is false.
ii) $f(x)$ has inflection points where $f^{\prime \prime}(x)$ changes sign, that is at the border between convex and concave. In the interval $\langle 4,24]$ this happens (approximately) at $x=6, x=9.8$ and at $x=17.8$. The statement is true.
iii) $f^{\prime}(x)$ is decreasing where $f^{\prime \prime}(x) \leqslant 0$, that is where $f(x)$ is concave. In the interval $[12,24]$ the function $f(x)$ is first concave until 17.6, then convex. Hence $f^{\prime}(x)$ is not decreasing in the whole interval. The statement is false.

Problem 9

i) By the power rule $D^{\prime}(p)=30 \cdot(-0.8) p^{-1.8}$. Then

$$
\varepsilon(p)=\frac{D^{\prime}(p) \cdot p}{D(p)}=\frac{30 \cdot(-0.8) p^{-1.8} \cdot p}{30 p^{-0.8}}=-0.8 \quad(\text { a constant function })
$$

ii) Because $\varepsilon(20)=-0.8>-1$ the demand function is inelastic at $p=20$. Hence the revenue increases if the price increases somewhat from $p=20$. This can also be seen directly since the revenue function $R(p)=p \cdot D(p)=30 p^{0.2}$ is an increasing function.

Problem 10

i) We put $y=e^{-0.02 x}+100$ and solve for x. That gives $e^{-0.02 x}=y-100$. By inserting both sides into $\ln (-)$ we get $-0.02 x=\ln (y-100)$. Multiplying with -50 on each side gives $y=-50 \ln (y-100)$. Changing variables gives $g(x)=-50 \ln (x-100)$.
ii) We always have $D_{g}=R_{f}$. Because $f(x)$ is a strictly decreasing function the greatest function value is er $f(0)=101$. We also see that

$$
f(x)=100+1 / e^{0.02 x} \underset{x \rightarrow \infty}{\longrightarrow} 100^{+}
$$

Hence $D_{g}=R_{f}=\underline{\underline{\langle 100,101]}}$. We always have $V_{g}=D_{f}$ so $\underline{V_{g}=[0, \infty\rangle}$.

Problem 11

i) With continuous compounding the annual growth factor is $e^{0.072}$. Hence the effective interest is $r_{\text {eff }}=e^{0.072}-1=7.47 \%$.
ii) If r is the interest then the present value of the cash flow is $-A+B /(1+r)^{5}$. Since r is supposed to be the internal rate of return the present value has to be 0 , that is $B /(1+r)^{5}=A$, that is $(1+r)^{5}=B / A$, that is $1+r=(B / A)^{1 / 5}$. Hence the internal rate of return is $r=(B / A)^{1 / 5}-1$. We could also assume continuous compounding. Then the present value is $-A+B \cdot e^{-5 r}$. It gives the equation $B \cdot e^{-5 r}=A$ for the internal rate of return, that is $e^{5 r}=B / A$. Hence the internal rate of return is $r=\frac{1}{5} \ln (B / A)$.

Problem 12

i) We think of y as an (undetermined) function of x and differentiate each side of the equation with respect to x. It gives $3 x^{2}-4 y-4 x y^{\prime}+2 y y^{\prime}=0$. Here we have used both the product rule and the chain rule. Then we solve the equation for y^{\prime}. Collect terms with y^{\prime} on the left hand side and factorise: $(2 y-4 x) y^{\prime}=4 y-3 x^{2}$. Dividing with $(2 y-4 x)$ on each side gives

$$
y^{\prime}=\frac{4 y-3 x^{2}}{2 y-4 x}
$$

ii) We use the one point formula $y-3=a(x-1)$ where a is the slope given by the expression for y^{\prime}, that is $a=\left(4 \cdot 3-3 \cdot 1^{2}\right) /(2 \cdot 3-4 \cdot 1)=9 / 2$. Hence the tangent equation $y-3=4.5(x-1)$ gives $y=4.5 x-1.5$.

