School exam (3h) EBA11802 - Mathematics for Data Science

5 May 2023

The exam set has 2 pages. All 12 problems have equal weight. You are required to give reasons for all answers. Grades: A - F which counts for 20% of the final grade in the course. Support materials permitted: BI-approved exam calculator. Ruler.

Problem 1

Factorise the polynomial $f(x) = x^4 - 7x^2 + 6x$ into factors of the least possible degree.

Problem 2

A hyperbola function f(x) has a horizontal asymptote y = 100 and a vertical asymptote x = 30. Moreover, f(40) = 99.

- i) Determine the expression for f(x).
- ii) Draw a sketch of the graph of f(x) with asymptotes.

Problem 3

Calculate the expression for the differentiated function f'(x) if

i) $f(x) = x\sqrt{x}$ ii) $f(x) = \frac{3x-4}{x-1}$ iii) $f(x) = (2x+3)^{50} + 11$

Problem 4

You are supposed to be paid 2 million every year for n years with the first payment 5 years from now. Suppose the interest is 6% with annual compounding.

- i) Write down the geometric series which gives the present value of the cash flow.
- ii) Use the geometric series to compute the present value of the cash flow if n = 20.
- iii) Use the geometric series to compute the present value of the cash flow if the payments continue forever.

Problem 5

- i) Solve the equation $\sqrt{10 x^2} = x 2$.
- ii) Solve the inequality $\ln(x+2) \ln(x) \le 0.1$.

Problem 6

We have a cost function $K(x) = K_0 \cdot e^{0.05x}$ with $x \ge 0$ where K_0 is an undetermined positive number.

- i) Determine the marginal cost function.
- ii) Calculate the cost optimum and the minimal average unit cost.

Problem 7

We have the function $f(x) = 8x^2 - 25 \cdot \ln(x)$.

- i) Determine where f(x) is increasing and where it is decreasing.
- ii) Determine where f(x) is concave and where it is convex.

Problem 8

In figure 1 you see the graph of the function f(x).

Figure 1: The graph of f(x)

Determine whether the statement is true or false and give a short explanation.

- i) f(x) has three stationary points in the interval [3, 10].
- ii) f(x) has three inflection points in the interval (4, 24].
- iii) f'(x) is decreasing in the interval [12, 24].

Problem 9

Let *p* be the price of a commodity and suppose $D(p) = 30p^{-0.8}$ with p > 0 is the demand function. Let $\varepsilon(p)$ be the momentary price elasticity of the demand function.

- i) Calculate $\varepsilon(p)$.
- ii) Determine whether the revenue is going up or down if the price is increasing a little from p = 20.

Problem 10

We have the function $f(x) = e^{-0.02x} + 100$ with domain of definition $D_f = [0, \infty)$. Let g(x) be the inverse function of f(x).

- i) Determine the expression of g(x).
- ii) Determine the domain of definition D_g and the range R_g of g(x).

Problem 11

- i) A bank account has 7.2% nominal interest and continuous compounding. Determine the effective interest.
- ii) Suppose *A* and *B* are two undetermined positive numbers. An investment of *A* million is supposed to give a payment of *B* million 5 years from now. Determine the internal rate of return for the cash flow.

Problem 12

We have a curve implicitly given by the equation $x^3 - 4xy + y^2 = -2$.

- i) Find an expression for y' in terms of y and x.
- ii) Determine the expression for the tangent of the curve at the point (1, 3).