School exam (3h) EBA11802-Mathematics for Data Science

5 May 2023
The exam set has 2 pages. All 12 problems have equal weight. You are required to give reasons for all answers. Grades: A - F which counts for 20% of the final grade in the course.
Support materials permitted: BI-approved exam calculator. Ruler.

Problem 1

Factorise the polynomial $f(x)=x^{4}-7 x^{2}+6 x$ into factors of the least possible degree.

Problem 2

A hyperbola function $f(x)$ has a horizontal asymptote $y=100$ and a vertical asymptote $x=30$. Moreover, $f(40)=99$.
i) Determine the expression for $f(x)$.
ii) Draw a sketch of the graph of $f(x)$ with asymptotes.

Problem 3

Calculate the expression for the differentiated function $f^{\prime}(x)$ if
i) $f(x)=x \sqrt{x}$
ii) $f(x)=\frac{3 x-4}{x-1}$
iii) $f(x)=(2 x+3)^{50}+11$

Problem 4

You are supposed to be paid 2 million every year for n years with the first payment 5 years from now. Suppose the interest is 6% with annual compounding.
i) Write down the geometric series which gives the present value of the cash flow.
ii) Use the geometric series to compute the present value of the cash flow if $n=20$.
iii) Use the geometric series to compute the present value of the cash flow if the payments continue forever.

Problem 5

i) Solve the equation $\sqrt{10-x^{2}}=x-2$.
ii) Solve the inequality $\ln (x+2)-\ln (x) \leqslant 0.1$.

Problem 6

We have a cost function $K(x)=K_{0} \cdot e^{0.05 x}$ with $x \geqslant 0$ where K_{0} is an undetermined positive number.
i) Determine the marginal cost function.
ii) Calculate the cost optimum and the minimal average unit cost.

Problem 7

We have the function $f(x)=8 x^{2}-25 \cdot \ln (x)$.
i) Determine where $f(x)$ is increasing and where it is decreasing.
ii) Determine where $f(x)$ is concave and where it is convex.

Problem 8

In figure 1 you see the graph of the function $f(x)$.

Figure 1: The graph of $f(x)$

Determine whether the statement is true or false and give a short explanation.
i) $f(x)$ has three stationary points in the interval $[3,10]$.
ii) $f(x)$ has three inflection points in the interval $\langle 4,24]$.
iii) $f^{\prime}(x)$ is decreasing in the interval [12, 24].

Problem 9

Let p be the price of a commodity and suppose $D(p)=30 p^{-0.8}$ with $p>0$ is the demand function. Let $\varepsilon(p)$ be the momentary price elasticity of the demand function.
i) Calculate $\varepsilon(p)$.
ii) Determine whether the revenue is going up or down if the price is increasing a little from $p=20$.

Problem 10

We have the function $f(x)=e^{-0.02 x}+100$ with domain of definition $D_{f}=[0, \infty\rangle$. Let $g(x)$ be the inverse function of $f(x)$.
i) Determine the expression of $g(x)$.
ii) Determine the domain of definition D_{g} and the range R_{g} of $g(x)$.

Problem 11

i) A bank account has 7.2% nominal interest and continuous compounding. Determine the effective interest.
ii) Suppose A and B are two undetermined positive numbers. An investment of A million is supposed to give a payment of B million 5 years from now. Determine the internal rate of return for the cash flow.

Problem 12

We have a curve implicitly given by the equation $x^{3}-4 x y+y^{2}=-2$.
i) Find an expression for y^{\prime} in terms of y and x.
ii) Determine the expression for the tangent of the curve at the point $(1,3)$.

