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Question 1.

(a) We write down the extended matrix of the system, and use elementary row operations:1 −1 3 4 11
2 1 1 0 2
4 2 1 2 0

 →

1 −1 3 4 11
0 3 −5 −8 −20
0 6 −11 −14 −44

 →

1 −1 3 4 11
0 3 −5 −8 −20
0 0 −1 2 −4


The result is an echelon form, and we have marked the pivot positions in blue. Hence, there
are infinitely many solutions, with w free when we write x = (x,y,z,w) for the unknowns. We
find the solutions by back substitution: From the final equation, we get −z + 2w = −4, or
z = 2w+4. The next equations gives 3y−5(2w+4)−8w = −20, or 3y = 18w, that is y = 6w.
The first equations gives x− (6w)+3(2w+4)+4w = 11, or x = −4w−1. Hence, the solutions
of the linear system can be written

x =


−4w − 1

6w
2w + 4

w

 = w


−4
6
2
1

+


−1
0
4
0


where w is a free variable.

(b) If we replace b with 0 in (a), we find that the solutions of the linear system Ax = 0 are
given by x = w · (−4,6,2,1) where w is a free variable. In particular, w = 1 gives the solution
x = (−4,6,2,1) of the linear system, which means that −4v1 + 6v2 + 2v3 + v4 = 0. We can
solve this vector equation for v3 and find that

−2v3 = −4v1 + 6v2 + v4 ⇒ v3 = 2v1 − 3v2 −
1

2
v4

Alternatively, we could solve the vector equation x1v1 + x2v2 + x4v4 = v3 by writing it as a
linear system and using Gaussian elimination.

Question 2.

(a) Since (e2x)′ = 2e2x by the chain rule, we get
∫
e2x dx = e2x/2 + C, and hence∫ 1

0
1 + e2x dx =

[
x+

1

2
e2x

]1
0

= 1 +
1

2
e2 − 1

2
e0 =

1

2

(
e2 + 1

)
(b) We use the substitution u = x+ 1, with du = dx, and the power rule for integration:∫

15x
√
x+ 1 dx =

∫
15(u− 1)u1/2 du =

∫
15u3/2 − 15u1/2 du = 6u5/2 − 10u3/2 + C

This gives∫ 1

0
15x

√
x+ 1 dx =

[
6u5/2 − 10u3/2

]2
1
= 6(4

√
2− 1)− 10(2

√
2− 1) = 4

√
2 + 4

(c) We use partial fractions to simplify the integrand:

3

9− x2
=

A

3− x
+

B

3 + x
⇒ 3 = A(3 + x) +B(3− x)

This gives (A−B)x+ (3A+ 3B) = 3, and hence A−B = 0 and 3A+ 3B = 3. From this, we
get that A = B and 6A = 3, or A = 1/2. The integral becomes∫

3

9− x2
dx =

∫
1/2

3− x
+

1/2

3 + x
dx = −1

2
ln |3− x|+ 1

2
ln |3 + x|+ C =

1

2
ln

∣∣∣∣3 + x

3− x

∣∣∣∣+ C

This gives ∫ 1

0

3

9− x2
dx =

[
1

2
ln

∣∣∣∣3 + x

3− x

∣∣∣∣]1
0

=
1

2
ln(4/2) =

1

2
ln 2

1



(d) Note that 2x ln(
√
x) = 2x · 1

2 lnx = x lnx since
√
x = x1/2. Then, we use integration by parts

with u′ = x and v = ln(x), which gives u = x2/2 and v′ = 1/x. Since
∫
u′v dx = uv−

∫
uv′ dx,

integration by parts gives∫
x ln(x) dx =

1

2
x2 lnx−

∫
1

2
x2 · 1

x
dx =

1

2
x2 lnx−

∫
1

2
x dx =

1

2
x2 lnx− 1

4
x2 + C

This gives ∫
2x ln(

√
x) dx =

1

2
x2 lnx− 1

4
x2 + C

(e) The parabola P is the graph of the function f(x) = a
[
(x− 2)2 − 3

]
since x = 2 ±

√
3 are

the zeros of f , and since it intersects the y-axis in y = −1, we have f(0) = a(4 − 3) = −1,
so a = −1.Hence, f(x) = 3 − (x − 2)2. The straight line L is the graph of the function
g(x) = −2x+ b since it has slope −2, and b = 4 since f(1) = 2 and g(1) = −2 + b. Hence, we
get g(x) = 4− 2x. The intersection points are given by

3− (2− x)2 = 4− 2x ⇒ −x2 + 6x− 5 = 0

The intersection points become x = 1 and x = 5. The part of the plane (in grey) is shown in
the figure below. The area of the grey part of the plane is

A =

∫ 5

1
f(x)− g(x) dx =

∫ 5

1
−x2 + 6x− 5 dx =

[
−1

3
x3 + 3x2 − 5x

]5
1

=

(
−125

3
+ 75− 25

)
−
(
−1

3
+ 3− 5

)
= −124

3
+ 50 + 2 =

156− 124

3
=

32
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Question 3.

(a) We use cofactor expansion along the first row to compute the determinant:∣∣∣∣∣∣
t 2 4
2 t 4
2 4 t

∣∣∣∣∣∣ = t(t2 − 16)− 2(2t− 8) + 4(8− 2t) = (t− 4)(t(t+ 4)− 4− 8)

= (t− 4)(t2 + 4t− 12) = (t− 4)(t+ 6)(t− 2) = (t− 2)(t− 4)(t+ 6)

Here, we have used that t2 − 16 = (t − 4)(t + 4) and that t − 4 is a common factor in the
cofactor expansion. We can also write the determinant as |A| = t3 − 28t+ 48.

(b) When t = 1 we get det(A) = (−1)(−3)7 = 21 ̸= 0, hence A has an inverse matrix given by

A−1 =
1

|A|

C11 C12 C13
C21 C22 C23
C31 C32 C33

T

2



where Cij is the cofactor of A in position (i,j). With t = 1, the inverse matrix is given by

A =

1 2 4
2 1 4
2 4 1

 ⇒ A−1 =
1

21

−15 6 6
14 −7 0
4 4 −3

T

=
1

21

−15 14 4
6 −7 4
6 0 −3


(c) The linear system has one unique solution when |A| ≠ 0, and none or infinitely many solutions

when |A| = 0. Since |A| = 0 for t = 2, 4,−6, we see that the linear system has precicely one
solution for all values of t except for t = 2, t = 4 and t = −6.

Question 4.

(a) The partial derivatives of f(x,y) = x2y+xy2−3xy are f ′
x = 2xy+y2−3y and f ′

y = x2+2xy−3x,
and the first order conditions f ′

x = f ′
y = 0 are given by

y(2x+ y − 3) = 0 ⇒ y = 0 eller 2x+ y = 3

x(x+ 2y − 3) = 0 ⇒ x = 0 eller x+ 2y = 3

This gives four cases: x = y = 0, y = 0, x+2y = 3, x = 0, 2x+y = 3, or 2x+y = x+2y = 3.
The first three cases gives the points (x,y) = (0,0), (0,3), (3,0), and the final case gives (x,y) =
(1,1). In the final case, we can for example use Gaussian elimination to find the solution. We
conclude that we have four stationary points for f :

(x,y) = (0,0), (0,3), (3,0), (1,1)

(b) The Hessian matrix of f in an arbitrary point is given by

H(f) =

(
f ′′
xx f ′′

xy

f ′′
xy f ′′

yy

)
=

(
2y 2x+ 2y − 3

2x+ 2y − 3 2x

)
We insert the first three stationary points (x,y) = (0,0), (0,3), (3,0) into the Hessian and get

H(f)(0,0) =

(
0 −3
−3 0

)
, H(f)(3,0) =

(
0 3
3 6

)
, H(f)(0,3) =

(
6 3
3 0

)
In all three cases, detH(f) = −9 < 0, and hence the points (0,0), (3,0), (0,3) are saddle points
for f . In the point (1,1) we get the Hessian

H(f)(1,1) =

(
2 1
1 2

)
Since detH(f)(1,1) = 4−1 = 3 > 0 and tr H(f)(1,1) = 2+2 = 4 > 0, the point (1,1) is a local
minimum for f . Since f does not have local maximum points, the function f does not have a
maximum value. The only candidate for a minimum value for f is found in the local minimum
point (1,1) with function value f(1,1) = −1. But since f(−2,− 2) = −8− 8− 12 = −28 < −1,
this is not a global minimum for f . We conclude that f does not have a maximum nor a
minimum value.

Question 5.

(a) We use the Lagrange multiplier method with the Lagrangian L = xy − λ(x2 + y2 + x2y2 − 3)
to find candidate points. The Lagrange conditions are

L′
x = y − λ(2x+ 2xy2) = 0

L′
y = x− λ(2y + 2x2y) = 0

x2 + y2 + x2y2 = 3

We solve the first two equations for λ. This gives

λ =
y

2x(1 + y2)
=

x

2y(1 + x2)

We have used the factorizations 2x + 2xy2 = 2x(1 + y2) and 2y + 2x2y = 2y(1 + x2) in the
previous expressions. Note that one of the denominators become zero if x = 0 or y = 0. But
x = 0 gives y = 0 in the first condition, and y = 0 gives x = 0 from the second condition. Since

3



(x,y) = (0,0) does not satisfy the constraint, we do not lose any solutions by using the fractional
expressions above. By cross multiplying (or multiplication by a common denominator) we get

y · 2y(1 + x2) = x · 2x(1 + y2) ⇒ 2y2 + 2y2x2 = 2x2 + 2x2y2 ⇒ 2y2 = 2x2

Hence, y2 = x2. If we insert this into the constraint, we get x2+x2+x4 = 3, or x4+2x2−3 = 0.
This can be written

x4 + 2x2 − 3 = (x2 + 3)(x2 − 1) = 0 ⇒ x2 = 1

since x2 + 3 > 0 for all x. Hence, x = ±1, and y2 = x2 so y = ±1, and for each of the four
combinations of signs, we find λ from the fractional expression above. Hence, we get that the
following four points satisfy the Lagrange conditions:

(x,y;λ) = (1,1; 1/4), (−1,− 1; 1/4), (1,− 1;−1/4), (−1,1;−1/4)

(b) A point has a degenerate constraint if g′x = g′y = 0, where g(x,y) = x2 + y2 + x2y2. This gives

g′x = 2x+ 2xy2 = 0, g′y = 2y + 2x2y = 0 ⇒ 2x(1 + y2) = 2y(1 + x2) = 0

Since 1 + y2, 1 + x2 > 0 for all x,y, this means that x = y = 0. But the point (x,y) = (0,0) is
not admissible since it does not satisfy the constraint; g(0,0) = 0 ̸= 3. We conclude that there
are no admissible points with degenerate constraint for this problem.

(c) Note that the set D of admissible points, given by the equation g(x,y) = x2 + y2 + x2y2 = 3,
is a compact set: It is closed since it is given by an equality, and it is bounded because
−
√
3 ≤ x,y ≤

√
3 for all points (x,y) in D. We can see this in the following way: Since

x2 + y2 + x2y2 = 3 and each of the terms x2, y2, x2y2 ≥ 0 since they are squares, hence
x2, y2, x2y2 ≤ 3. From x2 ≤ 3 it follows that −

√
3 ≤ x ≤

√
3, and similarly, it follows from

y2 ≤ 3 that −
√
3 ≤ x ≤

√
3. Since f is continuous, it follows from the Extreme Value

Theorem that the Lagrange problem has a maximum. This maximum point must be one of
the candidate points we found in (a) since there are no admissible points with degenerate
constraint. Since f(1,1) = f(−1, − 1) = 1 and f(−1,1) = f(−1,1) = −1, it follows that the
maximum value is fmax = 1 in the points (x,y) = (1,1), (−1,− 1) with λ = 1/4.
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