Suggested solution	EBA 1180 Mathematics for Data Science
Date	May 24th 2023 from 09.00-14.00

Question 1.

(a) We write down the extended matrix of the system, and use elementary row operations:

$$
\left(\begin{array}{cccc|c}
1 & -1 & 3 & 4 & 11 \\
2 & 1 & 1 & 0 & 2 \\
4 & 2 & 1 & 2 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & -1 & 3 & 4 & 11 \\
0 & 3 & -5 & -8 & -20 \\
0 & 6 & -11 & -14 & -44
\end{array}\right) \rightarrow\left(\begin{array}{cccc|c}
1 & -1 & 3 & 4 & 11 \\
0 & 3 & -5 & -8 & -20 \\
0 & 0 & -1 & 2 & -4
\end{array}\right)
$$

The result is an echelon form, and we have marked the pivot positions in blue. Hence, there are infinitely many solutions, with w free when we write $\mathbf{x}=(x, y, z, w)$ for the unknowns. We find the solutions by back substitution: From the final equation, we get $-z+2 w=-4$, or $z=2 w+4$. The next equations gives $3 y-5(2 w+4)-8 w=-20$, or $3 y=18 w$, that is $y=6 w$. The first equations gives $x-(6 w)+3(2 w+4)+4 w=11$, or $x=-4 w-1$. Hence, the solutions of the linear system can be written

$$
\mathbf{x}=\left(\begin{array}{c}
-4 w-1 \\
6 w \\
2 w+4 \\
w
\end{array}\right)=w\left(\begin{array}{c}
-4 \\
6 \\
2 \\
1
\end{array}\right)+\left(\begin{array}{c}
-1 \\
0 \\
4 \\
0
\end{array}\right)
$$

where w is a free variable.
(b) If we replace \mathbf{b} with $\mathbf{0}$ in (a), we find that the solutions of the linear system $A \mathbf{x}=\mathbf{0}$ are given by $\mathbf{x}=w \cdot(-4,6,2,1)$ where w is a free variable. In particular, $w=1$ gives the solution $\mathbf{x}=(-4,6,2,1)$ of the linear system, which means that $-4 \mathbf{v}_{1}+6 \mathbf{v}_{2}+2 \mathbf{v}_{3}+\mathbf{v}_{4}=\mathbf{0}$. We can solve this vector equation for \mathbf{v}_{3} and find that

$$
-2 \mathbf{v}_{3}=-4 \mathbf{v}_{1}+6 \mathbf{v}_{2}+\mathbf{v}_{4} \quad \Rightarrow \quad \mathbf{v}_{3}=2 \mathbf{v}_{1}-3 \mathbf{v}_{2}-\frac{1}{2} \mathbf{v}_{4}
$$

Alternatively, we could solve the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{4} \mathbf{v}_{4}=\mathbf{v}_{3}$ by writing it as a linear system and using Gaussian elimination.

Question 2.

(a) Since $\left(e^{2 x}\right)^{\prime}=2 e^{2 x}$ by the chain rule, we get $\int e^{2 x} \mathrm{~d} x=e^{2 x} / 2+C$, and hence

$$
\int_{0}^{1} 1+e^{2 x} \mathrm{~d} x=\left[x+\frac{1}{2} e^{2 x}\right]_{0}^{1}=1+\frac{1}{2} e^{2}-\frac{1}{2} e^{0}=\frac{1}{2}\left(e^{2}+1\right)
$$

(b) We use the substitution $u=x+1$, with $\mathrm{d} u=\mathrm{d} x$, and the power rule for integration:
$\int 15 x \sqrt{x+1} \mathrm{~d} x=\int 15(u-1) u^{1 / 2} \mathrm{~d} u=\int 15 u^{3 / 2}-15 u^{1 / 2} \mathrm{~d} u=6 u^{5 / 2}-10 u^{3 / 2}+C$
This gives

$$
\int_{0}^{1} 15 x \sqrt{x+1} \mathrm{~d} x=\left[6 u^{5 / 2}-10 u^{3 / 2}\right]_{1}^{2}=6(4 \sqrt{2}-1)-10(2 \sqrt{2}-1)=4 \sqrt{2}+4
$$

(c) We use partial fractions to simplify the integrand:

$$
\frac{3}{9-x^{2}}=\frac{A}{3-x}+\frac{B}{3+x} \quad \Rightarrow \quad 3=A(3+x)+B(3-x)
$$

This gives $(A-B) x+(3 A+3 B)=3$, and hence $A-B=0$ and $3 A+3 B=3$. From this, we get that $A=B$ and $6 A=3$, or $A=1 / 2$. The integral becomes
$\int \frac{3}{9-x^{2}} \mathrm{~d} x=\int \frac{1 / 2}{3-x}+\frac{1 / 2}{3+x} \mathrm{~d} x=-\frac{1}{2} \ln |3-x|+\frac{1}{2} \ln |3+x|+C=\frac{1}{2} \ln \left|\frac{3+x}{3-x}\right|+C$
This gives

$$
\int_{0}^{1} \frac{3}{9-x^{2}} \mathrm{~d} x=\left[\frac{1}{2} \ln \left|\frac{3+x}{3-x}\right|\right]_{0}^{1}=\frac{1}{2} \ln (4 / 2)=\frac{1}{2} \ln 2
$$

(d) Note that $2 x \ln (\sqrt{x})=2 x \cdot \frac{1}{2} \ln x=x \ln x$ since $\sqrt{x}=x^{1 / 2}$. Then, we use integration by parts with $u^{\prime}=x$ and $v=\ln (x)$, which gives $u=x^{2} / 2$ and $v^{\prime}=1 / x$. Since $\int u^{\prime} v \mathrm{~d} x=u v-\int u v^{\prime} \mathrm{d} x$, integration by parts gives

$$
\int x \ln (x) \mathrm{d} x=\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x^{2} \cdot \frac{1}{x} \mathrm{~d} x=\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x \mathrm{~d} x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C
$$

This gives

$$
\int 2 x \ln (\sqrt{x}) \mathrm{d} x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C
$$

(e) The parabola P is the graph of the function $f(x)=a\left[(x-2)^{2}-3\right]$ since $x=2 \pm \sqrt{3}$ are the zeros of f, and since it intersects the y-axis in $y=-1$, we have $f(0)=a(4-3)=-1$, so $a=-1$.Hence, $f(x)=3-(x-2)^{2}$. The straight line L is the graph of the function $g(x)=-2 x+b$ since it has slope -2 , and $b=4$ since $f(1)=2$ and $g(1)=-2+b$. Hence, we get $g(x)=4-2 x$. The intersection points are given by

$$
3-(2-x)^{2}=4-2 x \quad \Rightarrow \quad-x^{2}+6 x-5=0
$$

The intersection points become $x=1$ and $x=5$. The part of the plane (in grey) is shown in the figure below. The area of the grey part of the plane is

$$
\begin{aligned}
A & =\int_{1}^{5} f(x)-g(x) \mathrm{d} x=\int_{1}^{5}-x^{2}+6 x-5 \mathrm{~d} x=\left[-\frac{1}{3} x^{3}+3 x^{2}-5 x\right]_{1}^{5} \\
& =\left(-\frac{125}{3}+75-25\right)-\left(-\frac{1}{3}+3-5\right)=-\frac{124}{3}+50+2=\frac{156-124}{3}=\frac{32}{3}
\end{aligned}
$$

Question 3.

(a) We use cofactor expansion along the first row to compute the determinant:

$$
\begin{aligned}
\left|\begin{array}{lll}
t & 2 & 4 \\
2 & t & 4 \\
2 & 4 & t
\end{array}\right| & =t\left(t^{2}-16\right)-2(2 t-8)+4(8-2 t)=(t-4)(t(t+4)-4-8) \\
& =(t-4)\left(t^{2}+4 t-12\right)=(t-4)(t+6)(t-2)=(t-2)(t-4)(t+6)
\end{aligned}
$$

Here, we have used that $t^{2}-16=(t-4)(t+4)$ and that $t-4$ is a common factor in the cofactor expansion. We can also write the determinant as $|A|=t^{3}-28 t+48$.
(b) When $t=1$ we get $\operatorname{det}(A)=(-1)(-3) 7=21 \neq 0$, hence A has an inverse matrix given by

$$
A^{-1}=\frac{1}{|A|}\left(\begin{array}{ccc}
C_{11} & C_{12} & C_{1} 3 \\
C_{21} & C_{22} & C_{2} 3 \\
C_{31} & C_{32} & C_{3} 3 \\
2
\end{array}\right)^{T}
$$

where $C_{i j}$ is the cofactor of A in position (i, j). With $t=1$, the inverse matrix is given by

$$
A=\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 1 & 4 \\
2 & 4 & 1
\end{array}\right) \quad \Rightarrow \quad A^{-1}=\frac{1}{21}\left(\begin{array}{ccc}
-15 & 6 & 6 \\
14 & -7 & 0 \\
4 & 4 & -3
\end{array}\right)^{T}=\frac{1}{21}\left(\begin{array}{ccc}
-15 & 14 & 4 \\
6 & -7 & 4 \\
6 & 0 & -3
\end{array}\right)
$$

(c) The linear system has one unique solution when $|A| \neq 0$, and none or infinitely many solutions when $|A|=0$. Since $|A|=0$ for $t=2,4,-6$, we see that the linear system has precicely one solution for all values of t except for $t=2, t=4$ and $t=-6$.

Question 4.

(a) The partial derivatives of $f(x, y)=x^{2} y+x y^{2}-3 x y$ are $f_{x}^{\prime}=2 x y+y^{2}-3 y$ and $f_{y}^{\prime}=x^{2}+2 x y-3 x$, and the first order conditions $f_{x}^{\prime}=f_{y}^{\prime}=0$ are given by

$$
\begin{aligned}
& y(2 x+y-3)=0 \quad \Rightarrow \quad y=0 \text { eller } 2 x+y=3 \\
& x(x+2 y-3)=0 \quad \Rightarrow \quad x=0 \text { eller } x+2 y=3
\end{aligned}
$$

This gives four cases: $x=y=0, y=0, x+2 y=3, x=0,2 x+y=3$, or $2 x+y=x+2 y=3$. The first three cases gives the points $(x, y)=(0,0),(0,3),(3,0)$, and the final case gives $(x, y)=$ $(1,1)$. In the final case, we can for example use Gaussian elimination to find the solution. We conclude that we have four stationary points for f :

$$
(x, y)=(0,0),(0,3),(3,0),(1,1)
$$

(b) The Hessian matrix of f in an arbitrary point is given by

$$
H(f)=\left(\begin{array}{ll}
f_{x x}^{\prime \prime} & f_{x y}^{\prime \prime} \\
f_{x y}^{\prime \prime} & f_{y y}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{cc}
2 y & 2 x+2 y-3 \\
2 x+2 y-3 & 2 x
\end{array}\right)
$$

We insert the first three stationary points $(x, y)=(0,0),(0,3),(3,0)$ into the Hessian and get

$$
H(f)(0,0)=\left(\begin{array}{cc}
0 & -3 \\
-3 & 0
\end{array}\right), \quad H(f)(3,0)=\left(\begin{array}{ll}
0 & 3 \\
3 & 6
\end{array}\right), \quad H(f)(0,3)=\left(\begin{array}{ll}
6 & 3 \\
3 & 0
\end{array}\right)
$$

In all three cases, $\operatorname{det} H(f)=-9<0$, and hence the points $(0,0),(3,0),(0,3)$ are saddle points for f. In the point $(1,1)$ we get the Hessian

$$
H(f)(1,1)=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Since $\operatorname{det} H(f)(1,1)=4-1=3>0$ and $\operatorname{tr} H(f)(1,1)=2+2=4>0$, the point $(1,1)$ is a local minimum for f. Since f does not have local maximum points, the function f does not have a maximum value. The only candidate for a minimum value for f is found in the local minimum point $(1,1)$ with function value $f(1,1)=-1$. But since $f(-2,-2)=-8-8-12=-28<-1$, this is not a global minimum for f. We conclude that f does not have a maximum nor a minimum value.

Question 5.

(a) We use the Lagrange multiplier method with the Lagrangian $\mathcal{L}=x y-\lambda\left(x^{2}+y^{2}+x^{2} y^{2}-3\right)$ to find candidate points. The Lagrange conditions are

$$
\begin{array}{r}
\mathcal{L}_{x}^{\prime}=y-\lambda\left(2 x+2 x y^{2}\right)=0 \\
\mathcal{L}_{y}^{\prime}=x-\lambda\left(2 y+2 x^{2} y\right)=0 \\
x^{2}+y^{2}+x^{2} y^{2}=3
\end{array}
$$

We solve the first two equations for λ. This gives

$$
\lambda=\frac{y}{2 x\left(1+y^{2}\right)}=\frac{x}{2 y\left(1+x^{2}\right)}
$$

We have used the factorizations $2 x+2 x y^{2}=2 x\left(1+y^{2}\right)$ and $2 y+2 x^{2} y=2 y\left(1+x^{2}\right)$ in the previous expressions. Note that one of the denominators become zero if $x=0$ or $y=0$. But $x=0$ gives $y=0$ in the first condition, and $y=0$ gives $x=0$ from the second condition. Since
$(x, y)=(0,0)$ does not satisfy the constraint, we do not lose any solutions by using the fractional expressions above. By cross multiplying (or multiplication by a common denominator) we get

$$
y \cdot 2 y\left(1+x^{2}\right)=x \cdot 2 x\left(1+y^{2}\right) \quad \Rightarrow \quad 2 y^{2}+2 y^{2} x^{2}=2 x^{2}+2 x^{2} y^{2} \quad \Rightarrow \quad 2 y^{2}=2 x^{2}
$$

Hence, $y^{2}=x^{2}$. If we insert this into the constraint, we get $x^{2}+x^{2}+x^{4}=3$, or $x^{4}+2 x^{2}-3=0$. This can be written

$$
x^{4}+2 x^{2}-3=\left(x^{2}+3\right)\left(x^{2}-1\right)=0 \quad \Rightarrow \quad x^{2}=1
$$

since $x^{2}+3>0$ for all x. Hence, $x= \pm 1$, and $y^{2}=x^{2}$ so $y= \pm 1$, and for each of the four combinations of signs, we find λ from the fractional expression above. Hence, we get that the following four points satisfy the Lagrange conditions:

$$
(x, y ; \lambda)=(1,1 ; 1 / 4),(-1,-1 ; 1 / 4),(1,-1 ;-1 / 4),(-1,1 ;-1 / 4)
$$

(b) A point has a degenerate constraint if $g_{x}^{\prime}=g_{y}^{\prime}=0$, where $g(x, y)=x^{2}+y^{2}+x^{2} y^{2}$. This gives

$$
g_{x}^{\prime}=2 x+2 x y^{2}=0, g_{y}^{\prime}=2 y+2 x^{2} y=0 \quad \Rightarrow \quad 2 x\left(1+y^{2}\right)=2 y\left(1+x^{2}\right)=0
$$

Since $1+y^{2}, 1+x^{2}>0$ for all x, y, this means that $x=y=0$. But the point $(x, y)=(0,0)$ is not admissible since it does not satisfy the constraint; $g(0,0)=0 \neq 3$. We conclude that there are no admissible points with degenerate constraint for this problem.
(c) Note that the set D of admissible points, given by the equation $g(x, y)=x^{2}+y^{2}+x^{2} y^{2}=3$, is a compact set: It is closed since it is given by an equality, and it is bounded because $-\sqrt{3} \leq x, y \leq \sqrt{3}$ for all points (x, y) in D. We can see this in the following way: Since $x^{2}+y^{2}+x^{2} y^{2}=3$ and each of the terms $x^{2}, y^{2}, x^{2} y^{2} \geq 0$ since they are squares, hence $x^{2}, y^{2}, x^{2} y^{2} \leq 3$. From $x^{2} \leq 3$ it follows that $-\sqrt{3} \leq x \leq \sqrt{3}$, and similarly, it follows from $y^{2} \leq 3$ that $-\sqrt{3} \leq x \leq \sqrt{3}$. Since f is continuous, it follows from the Extreme Value Theorem that the Lagrange problem has a maximum. This maximum point must be one of the candidate points we found in (a) since there are no admissible points with degenerate constraint. Since $f(1,1)=f(-1,-1)=1$ and $f(-1,1)=f(-1,1)=-1$, it follows that the maximum value is $f_{\max }=1$ in the points $(x, y)=(1,1),(-1,-1)$ with $\lambda=1 / 4$.

