EVALUATION GUIDELINES - Course paper

EBA 29101
 Mathematics for Business Analytics

Department of Economics

Start date:	03.10 .2019	Time 09:00
Finish date:	11.10 .2019	Time 12:00

Term paper - EBA2911 ${ }^{1}$ Mathematics for Business Analytics

3 Oct. - 11 Oct. 2019

SOLUTIONS

Problem 1

a) We put $v=x^{2}$ and get the quadratic equation $v^{2}-5 v-36=0$ with solutions $v=9, v=-4$, that is $x^{2}=9, x^{2}=-4$. Because $x^{2} \geqslant 0$ we only get $x= \pm 3$.
b) We put $v=\sqrt{x}$ and get the same equation $v^{2}-5 v-36=0$ as in (a). Hence we get $\sqrt{x}=9$ or $\sqrt{x}=-4$. Because $\sqrt{x} \geqslant 0$ we only get $x=81$.
c) We put $v=\frac{1}{x}$ and again get the same equation $v^{2}-5 v-36=0$ as in (a). Hence we get $\frac{1}{x}=9$ or $\frac{1}{x}=-4$, which gives $x=\frac{1}{9}, x=-\frac{1}{4}$.
d) We isolate one of the roots

$$
\sqrt{2 x-1}=5-\sqrt{x-1}
$$

and square each side

$$
2 x-1=5^{2}-10 \sqrt{x-1}+(x-1)
$$

Then we isolate the remaining root

$$
x-25=-10 \sqrt{x-1}
$$

and square each side

$$
x^{2}-50 x+625=100(x-1)
$$

that is

$$
x^{2}-150 x+725=0
$$

which has solutions $x=5, x=145$. We test these solutions to see if they are solutions of the original equation.
For $x=145$ the left hand side $\sqrt{2 \cdot 145-1}+\sqrt{145-1}=19+12=31$ which is not equal to the right hand side.
For $x=5$ the left hand side $\sqrt{2 \cdot 5-1}+\sqrt{5-1}=3+2=5$ which also is the right hand side. The conclusion is that $x=5$ is the only solution.

Problem 2

a) The inequality has 0 on the right hand side and a factorised fraction on the the left hand side. Then we can use a sign diagram to solve the inequality:

Figure 1: Sign diagram in 2a

[^0]which gives $x<-2$ or $2 \leqslant x<3$. Alternative way of writing: $x \in\langle\leftarrow,-2\rangle \cup[2,3\rangle$.
b) We rewrite to an equivalent inequality with 0 on the right hand side and one fraction on the left hand side:
$$
\frac{(x-2)+(x+2)(x-3)}{(x+2)(x-3)} \leqslant 0
$$

Then we resolve the paranteses, collect terms and factorise in the numerator:

$$
\frac{(x-\sqrt{8})(x+\sqrt{8})}{(x+2)(x-3)} \leqslant 0
$$

Now we can use a sign diagram:

Figure 2: Sign diagram in 2b
which gives $-\sqrt{8} \leqslant x<-2$ or $\sqrt{8} \leqslant x<3$. Alternative way of writing:
$x \in[-\sqrt{8},-2\rangle \cup[\sqrt{8}, 3\rangle$.

Problem 3

We have

$$
0.1 x^{4}-2.4 x^{3}+11.8 x^{2}+31.2 x+16.9=0.1\left(x^{4}-24 x^{3}+118 x^{2}+312 x+169\right)
$$

We insert $x=-1$ and get

$$
(-1)^{4}-24(-1)^{3}+118(-1)^{2}+312(-1)+169=1+24+118-312+169=0
$$

Hence $(x+1)$ is a factor. Use polynomial division to find

$$
\begin{aligned}
& \left(\begin{array}{c}
\left.x^{4}-24 x^{3}+118 x^{2}+312 x+169\right):(x+1)=x^{3}-25 x^{2}+143 x+169 \\
-x^{4}-x^{3} \\
-25 x^{3}+118 x^{2} \\
\frac{25 x^{3}+25 x^{2}}{143 x^{2}}+312 x \\
\frac{-143 x^{2}-143 x}{169 x+169} \\
\frac{-169 x-169}{0}
\end{array}\right.
\end{aligned}
$$

We insert $x=13$ in $x^{3}-25 x^{2}+143 x+169$ and get

$$
13^{3}-25 \cdot 13^{2}+143 \cdot 13+169=2197-4225+1859+169=0
$$

Hence $(x-13)$ is a factor. Use polynomial division to find

$$
\begin{aligned}
& \left(\begin{array}{c}
\left.x^{3}-25 x^{2}+143 x+169\right):(x-13)=x^{2}-12 x-13 \\
-x^{3}+13 x^{2} \\
-12 x^{2}+143 x \\
\frac{12 x^{2}-156 x}{-13 x}+169 \\
\frac{13 x-169}{0}
\end{array}\right.
\end{aligned}
$$

We find that $x^{2}-12 x-13$ has the zeros $x=-1$ and $x=13$, which gives $x^{2}-12 x-13=(x+1)(x-13)$. Then $0.1 x^{4}-2.4 x^{3}+11.8 x^{2}+31.2 x+16.9=\underline{0.1(x+1)^{2}(x-13)^{2}}$.

Problem 4

a) If the principal is K_{0}, the balance 10 years from now will be $K_{0} \cdot 1.021^{10}$ which is supposed to be 2 million. We therefore solve the equation $K_{0} \cdot 1.021^{10}=2$ mill and get the present value $K_{0}=2 \cdot 1.021^{-10} \mathrm{mill}=1624697.73$.
b) After 6 years the balance is $1624697.73 \cdot 1.021^{6}=1840462.73$. Deposited 4 years in an account with 2.7% interest gives $1840462.73 \cdot 1.027^{4}=\underline{2047428.77}$.
c) We use the expressions instead of the intermediate values:

$$
\begin{aligned}
2047428.77 & =1840462.73 \cdot 1.027^{4}=1624697.73 \cdot 1.021^{6} \cdot 1.027^{4} \\
& =2 \mathrm{mill} \cdot 1.021^{-10} \cdot 1.021^{6} \cdot 1.027^{4} \\
& =2 \mathrm{mill} \cdot 1.021^{-4} \cdot 1.027^{4} \\
& =2 \operatorname{mill} \cdot\left(\frac{1.027}{1.021}\right)^{4}
\end{aligned}
$$

d) If the principal is K_{0} the balance after 10 years will be $K_{0} \cdot 1.021^{6} \cdot 1.027^{4}=K_{0} \cdot 1.260191$ which gives the equation $K_{0} \cdot 1.260191=3$ mill and $K_{0}=3 \mathrm{mill}: 1.260191=\underline{2380592.32}$.
e) We use the expressions instead of the intermediate values in (c):

$$
1189532.60=\frac{3 \mathrm{mill}}{1.260191}=\frac{3 \mathrm{mill}}{1.027^{4} \cdot 1.021^{6}}
$$

Problem 5

a) The future value 6 years from now is:

$$
K_{6}=-20 \cdot 1.1^{6}-20 \cdot 1.1^{5}+30 \cdot 1.1+45=\underline{\underline{10.36}}
$$

b) The present value is:

$$
K_{0}=-20-20 \cdot 1.1^{-1}+30 \cdot 1.1^{-5}+45 \cdot 1.1^{-6}=5.85
$$

c) We have $5.85 \cdot 1.1^{6}=10.36$.

If A is a payment n years from now the presnt value is $A \cdot(1+r)^{-n}$ while the future value 6 years from now is $A \cdot(1+r)^{6-n}$. To get from the present value $A \cdot(1+r)^{-n}$ to the future value 6 years from now we multiply with $(1+r)^{6}$. This number is hence the same whenever the payment happens. When we multiply the sum of the present values of the many payments at different times by $(1+r)^{6}$ each of the present values will be multiplied by $(1+r)^{6}$ (we 'multiply into the paranthesis'). This gives the sum of the future values of each of the payments which precisely is the future value of the cash flow.

Problem 6

a) The period rate is $6 \%: 12=0.5 \%$ and it is $25 \cdot 12=300$ periods. First payment is $5 \cdot 12=60$ periods from now. The geometric series is hence

$$
\frac{15000}{1.005^{60}}+\frac{15000}{1.005^{61}}+\cdots+\frac{15000}{1.005^{358}}+\frac{15000}{1.005^{359}}
$$

If we sum this geometric series 'from the right' such that $a_{1}=\frac{15000}{1.005^{535}}, k=1.005$ and $n=300$ we get

$$
\frac{15000}{1.005^{359}} \cdot \frac{1.005^{300}-1}{0.005}=\underline{\underline{1734620.76}}
$$

b) The growth factor for one period is $e^{0.005}$. Apart from that it is as in (a). Hence we get the geometric series of present values:

$$
\frac{15000}{e^{60 \cdot 0.005}}+\frac{15000}{e^{61 \cdot 0.005}}+\cdots+\frac{15000}{e^{358 \cdot 0.005}}+\frac{15000}{e^{359 \cdot 0.005}}
$$

We calculate the sum of this geometric series 'from the right' such that $a_{1}=\frac{15000}{e^{3590.0005}}, k=e^{0.005}$ and $n=300$ and we get

$$
\frac{15000}{e^{359 \cdot 0.005}} \cdot \frac{e^{300 \cdot 0.005}-1}{e^{0.005}-1}=\underline{\underline{1730877.99}}
$$

Problem 7

a) The cash flow of payments is as follow (n years):

$$
\begin{array}{r||c|c|c|c|c}
\text { Year } & 15 & 16 & 17 & \ldots & n+14 \\
\hline \text { Payment } & A & A \cdot 1.03 & A \cdot 1.03^{2} & \ldots & A \cdot 1.03^{n-1}
\end{array}
$$

This gives the following sum of present values (with $n=25$):

$$
\underline{\underline{\frac{A}{1.05^{15}}}+\frac{A \cdot 1.03}{1.05^{16}}+\frac{A \cdot 1.03^{2}}{1.05^{17}}+\cdots+\frac{A \cdot 1.03^{24}}{1.05^{39}}}
$$

If we read the series 'backwards' we get the geometric series with $\xlongequal{a_{1}=\frac{A \cdot 1.03^{24}}{1.05^{39}}}, \underline{\underline{\frac{1.05}{1.03}}}$ and $n=25$. The sum of the series is then given as

$$
\begin{aligned}
\frac{A \cdot 1.03^{24}}{1.05^{39}} \cdot \frac{\left(\frac{1.05}{1.03}\right)^{25}-1}{\frac{1.05}{1.03}-1} & =A \cdot \frac{1.03^{24} \cdot \frac{1.05^{25}}{1.0^{25}}-1.03^{24}}{1.05^{39} \cdot \frac{1.05-1.03}{1.03}}=A \cdot \frac{\frac{1.05^{25}}{1.03}-1.03^{24}}{1.05^{39} \cdot \frac{0.02}{1.03}} \\
& =A \cdot \frac{1.05^{25}-1.03^{25}}{1.05^{39} \cdot 0.02}
\end{aligned}
$$

The present value is given as 20 million so we get the equation

$$
A \cdot \frac{1.05^{25}-1.03^{25}}{1.05^{39} \cdot 0.02}=20000000
$$

which gives

$$
A=20000000 \cdot \frac{1.05^{39} \cdot 0.02}{1.05^{25}-1.03^{25}}=\underline{\underline{2074847.72}}
$$

b) The sum of the present values continues the series in (a):

$$
\frac{A}{1.05^{15}}+\frac{A \cdot 1.03}{1.05^{16}}+\frac{A \cdot 1.03^{2}}{1.05^{17}}+\cdots+\frac{A \cdot 1.03^{n-1}}{1.05^{n+14}}+\ldots
$$

This is an infinite geometric series with $a_{1}=\frac{A}{1.055^{15}}$ and $k=\frac{1.03}{1.05}$ (which is less that 1). Then the sum is (by a formula in the textbook)

$$
a_{1} \cdot \frac{1}{1-k}=\frac{A}{1.05^{15}} \cdot \frac{1}{1-\frac{1.03}{1.05}}=\frac{A}{1.05^{15}} \cdot \frac{1.05}{0.02}=\frac{A}{1.05^{14} \cdot 0.02}
$$

The present value is given as 20 million so we get the equation

$$
\frac{A}{1.05^{14} \cdot 0.02}=20000000
$$

which gives

$$
A=20000000 \cdot 1.05^{14} \cdot 0.02=791972.64
$$

Problem 8

a) From the graph we see that the symmetry-axis is $x=20$ and the minimal value is $y=10$. That gives the standard form $f(x)=a(x-20)^{2}+10$. We also see that the point $(25,15)$ is on the graph. This gives the equation $a(25-20)^{2}+10=15$, that is $a=\frac{15-10}{25}=0.2$. Hence $f(x)=0.2(x-20)^{2}+10$.
b) From the graph we see that the centre of the ellipse is (4,3) with half-axes $a=10-4=6$ and $b=6-3=3$. This give the standard equation

$$
\frac{(x-4)^{2}}{36}+\frac{(y-3)^{2}}{9}=1
$$

Problem 9

a) We se that the points $A=(2,6), B=(6,10), C=(12,4)$ and $D=(8,0)$ is on the graph. We see that $A B C D$ is a rectangle (the edges have slope ± 1). Then the intersection of the diagonals is equidistant from each of the branches of the hyperbola. The intersection point has coordinates $(7,5)$. The horizontal and vertical asymptote cross each other in this point. Hence the vertical asymptote is the line $x=7$ and the horizontal asymptote the line $y=5$. Then the expression for the hyperbola is given by the standard form $f(x)=5+\frac{a}{x-7}$. We know that $f(8)=0$, that is $5+\frac{a}{8-7}=0$ which gives $a=-5$. Hence $f(x)=5-\frac{5}{(x-7)}$.
b) When x becomes big positive or big negative, the number $\frac{5}{(x-7)}$ approaches 0 (from above and below, respectively). Hence $5-\frac{5}{(x-7)}$ approaches 5 (from below and from above, respectively). Hence the line $y=5$ is the horizontal asymptote for $f(x)$ which agrees with what we found from the graph. We also have

$$
\frac{5}{(x-7)} \xrightarrow[x \rightarrow 7^{+}]{ } \infty \quad \text { og } \quad \frac{5}{(x-7)} \xrightarrow[x \rightarrow 7^{-}]{ }-\infty
$$

which gives

$$
5-\frac{5}{(x-7)} \xrightarrow[x \rightarrow 7^{+}]{ }-\infty \quad \text { og } \quad 5-\frac{5}{(x-7)} \xrightarrow[x \rightarrow 7^{-}]{ } \infty
$$

Hence the line $x=7$ is a vertical asymptote for $f(x)$ which also agrees with what we found from the graph. Since the function $f(x)$ has a defined value for all $x \neq 7$ this is the only vertical asymptote.

Problem 10

a) The expression is

$$
\begin{aligned}
3(x-(5-\sqrt{3}))(x-(5+\sqrt{3})) & =3\left(x^{2}-10 x+(5-\sqrt{3})(5+\sqrt{3})\right)=3\left(x^{2}-10 x+25-3\right) \\
& =3 x^{2}-30 x+66
\end{aligned}
$$

b) Here we have a double root. The expression is

$$
3(x-(-11))(x-(-11))=3(x+11)^{2}=3 x^{2}+66 x+363
$$

Problem 11

Let $x=t$ be the smallest root. Then $x=t+3$ is the biggest root. There are two cases. Either t is a double root (case A) or $t+3$ is a double root (case B).

Figure 3: Case A and B with $t=5$

In case A we get the third degree expression

$$
(x-t)^{2}(x-t-3)=x^{3}-3(t+1) x^{2}+3 t(t+2) x-t^{2}(t+3)
$$

In case B we get the third degree expression

$$
(x-t)(x-t-3)^{2}=x^{3}-3(t+2) x^{2}+3\left(t^{2}+4 t+3\right) x-t\left(t^{2}+6 t+9\right)
$$

We can write this as:

$$
\underline{ \begin{cases}x^{3}-3(t+1) x^{2}+3 t(t+2) x-t^{2}(t+3) & \text { in case A } \\ x^{3}-3(t+2) x^{2}+3\left(t^{2}+4 t+3\right) x-t\left(t^{2}+6 t+9\right) & \text { in case B }\end{cases} }
$$

[^0]: ${ }^{1}$ Exam code EBA29101

