EVALUATION GUIDELINES - Course paper

EBA 29101
 Mathematics for Business Analytics

Department of Economics

Start date:	05.03 .2021	Time 09:00
Finish date:	12.03 .2021	Time 12:00

Term paper - EBA2911 ${ }^{1}$ Mathematics for Business Analytics
 5 March - 12 March 2021

Solutions

Problem 1

a) The sum is a geometric series which, read from the right to the left, has $a_{1}=5000 \cdot 1.002$, growth factor $k=1.002$ and number of terms $n=60$. Then the formula for the sum of a geometric series gives

$$
5000 \cdot 1.002 \cdot \frac{1.002^{60}-1}{0.002}=\underline{\underline{319041.16}}
$$

If you deposit 5000 every month into an account (with first payment today) giving 2.4% nominal interest, monthly compounding and 60 terms, the sum is the account balance 5 years from now.
b) The sum is a geometric series which, read from the right to the left, has $a_{1}=\frac{5000}{e^{0.12}}$, growth factor $k=e^{0.002}$ and number of terms $n=60$. Then the formula for the sum of a geometric series gives

$$
\frac{5000}{e^{0.12}} \cdot \frac{e^{60 \cdot 0.002}-1}{e^{0.002}-1}=\frac{5000}{e^{0.12}} \cdot \frac{e^{0.12}-1}{e^{0.002}-1}=\underline{\underline{282416.30}}
$$

If 5000 is the monthly annuity with first payment one month from now, with 2.4% nominal interest and continuous compounding and 5 years down payment period, the given sum is the total amount borrowed (the present value of the cash flow).

Problem 2

a) The total present value of the cash flow is the sum of the present values of the payments:

$$
-18-\frac{25}{1.12}-\frac{15}{1.12^{2}}+\frac{95}{1.12^{8}}=-\underline{\underline{-13.91}}
$$

b) The future value of the cash flow after 7 years is (present value) $\cdot 1.12^{7}=-30.75$.
c) One extra payment of +30.75 after 7 years changes the future value of the cash flow after 7 years to 0 . Hence the present value of the new cash flow is also 0 and the discount rate of 12% is also the internal rate of return of the cash flow.

Problem 3

a) The present value of a payment of 30 million 7 years from now with nominal interest r (and continuous compounding) is $\frac{30}{e^{7 r}}$ which is supposed to be 15 million. This gives the equation $\frac{30}{e^{7 r}}=15$ which simplifies to $2=\frac{30}{15}=e^{7 r}$, that is $7 r=\ln (2)$ and $r=\frac{\ln 2}{7}=9.90 \%$.
b) The same calculation with 10 years gives $R=\frac{\ln 2}{10}$. Hence

$$
\frac{R}{r}=\frac{\left(\frac{\ln 2}{10}\right)}{\left(\frac{\ln 2}{7}\right)}=\frac{\left(\frac{1}{10}\right)}{\left(\frac{1}{7}\right)}=\frac{7}{10}=0.7
$$

and so $R=0.7 r$. Alternatively we can start with the equation $\frac{30}{e^{7 r}}=\frac{30}{e^{10 R}}$ which gives $7 r=10 R$ and then $R=0.7 r$.

Problem 4

[^0]a) We square both sides of $\sqrt{2 x+3}=x-6$ and get the quadratic equation $2 x+3=x^{2}-12 x+36$, that is $x^{2}-14 x=-33$. Completion of the square gives $(x-7)^{2}=49-33=16$ and $x=7 \pm 4$ that is $x=3$ or $x=11$. But because we have squared both sides of the equation we have to check is these really are solutions of the given equation.
$\underline{x=3}:$ LHS $=\sqrt{2 \cdot 3+3}=3$, while RHS $=3-6=-3$ hence $x=3$ is not a solution to the given equation.
$\underline{x=11}:$ LHS $=\sqrt{2 \cdot 11+3}=5$ og RHS $=11-6=5$ hence $\underline{\underline{x=11}}$ is the only solution of the given equation.
b) A product equals 0 if and only if one of the factors equals 0 . Then either $\ln (x)-3=0$, that is $x=e^{3}$, or $x^{2}-400=0$, that is $x= \pm 20$. Because $e^{x}>0$ for all $x, e^{x}+3=0$ has no solutions. Because $\ln (x)$ only is defined for $x>0, x=e^{3}$ and $x=20$ are the only true solutions to the given equation.
c) We multiply each side of the equation $\frac{\ln (x)}{\ln (x)-10}=11$ with $(\ln (x)-10)$ and get the equation $\ln (x)=11 \ln (x)-110$, that is $110=10 \ln (x)$. Dividing each side by 10 gives the equation $\ln (x)=11$, so $\underline{\underline{x=e^{11}}}$.
d) We substitute $\overline{\overline{u=x^{-3}}}$ into the equation and get $u^{2}-6 u=16$. Completing the square $(u-3)^{2}=9+16=25$ gives $u=3 \pm 5$, that is $u=-2$ or $u=8$. Because $x=\frac{1}{\sqrt[3]{u}}$, the solutions are $x=-\frac{1}{\sqrt[3]{2}}, x=\frac{1}{2}$.

Problem 5

Because $e^{x}>0$ for all x we see that the left hand side is greater than 0 no matter what x is. Moreover, the denominator is 1 more that the numerator and thus the left hand side is always less than 1. Hence $0<t<1$. In fact, for all such values of t the equation has a solution: We multiply the equation with $e^{x}+1$ on both sides and get $e^{x}=t e^{x}+t$ which gives $(1-t) e^{x}=t$ that is $e^{x}=\frac{t}{1-t}$ which is ok since $t<1$. This gives the solution $x=\ln \left(\frac{t}{1-t}\right)$ because the fraction is positive for $0<t<1$. This reasoning gives the answers:
a) The equation has solutions for all t with $0<t<1$ and no other values.
b) The solution is $x=\ln \left(\frac{t}{1-t}\right)$ for $0<t<1$.

Problem 6

a) We factorise the numerator: $\frac{x(2-x)}{x-5} \leqslant 0$. With sign diagram we get $0 \leqslant x \leqslant 2$ or $x>5$.
b) Subtracting 1 from each side and making the left hand side into one factorised fraction gives $\frac{(x+1)(x-3)}{(x+3)(x-4)} \geqslant 0$. With sign diagram we get $x<-3$ or $-1 \leqslant x \leqslant 3$ or $x>4$.
c) The inequality is only defined for $x>-4$. Since e^{x} is a strictly increasing function we can insert the left and the right hand side into $e^{(-)}$and obtain an equivalent inequality: $5 x+20 \leqslant e^{3}$ which gives $x \leqslant \frac{e^{3}}{5}-4$. The answer is thus $-4<x \leqslant \frac{e^{3}}{5}-4$.
d) We multiply both sides of the inequality with the positive number $e^{0.1 x}$ and get $e^{0.4 x} \leqslant 170$. Since $\ln (x)$ is a strictly increasing function we can insert the left and the right hand side into $\ln (-)$ and obtain an equivalent inequality: $0.4 x \leqslant \ln (170)$, that is $x \leqslant 2.5 \cdot \ln (170)$.
e) We note that $\ln (5-x)$ is only defined for $x<5$ and equals 0 if $x=4$. Moreover, $e^{x}>0$ for all x and $4-x^{2}=(2-x)(2+x)$. Hence a sign diagram with the factors $\ln (5-x), 2-x$ and $2+x$ gives $-2 \leqslant x \leqslant 2$ or $4 \leqslant x<5$.

Problem 7

a) Polynomial division gives:

$$
\begin{gathered}
\left(\begin{array}{r}
\left.3 x^{3}-7 x^{2}-10 x+14\right) \\
-3 x^{3}+12 x^{2}-9 x \\
5 x^{2}-19 x+14 \\
-5 x^{2}+20 x-15 \\
x-1
\end{array}\right.
\end{gathered}
$$

The remainder is $x-1$.
b) We have

$$
\frac{f(x)}{g(x)}=3 x+5+\frac{x-1}{(x-1)(x-3)}=3 x+5+\frac{1}{x-3}
$$

This gives the line $x=3$ as a vertical asymptote and the line $y=3 x+5$ as a non-vertical asymptote for $\frac{f(x)}{g(x)}$.

Problem 8

a) We solve the equation $y=-0.2 x+20$ for x and get $x=-5 y+100$, that is $g(x)=-5 x+100$. We have $f(0)=20$ and $f(10)=18$ and $f(x)$ is strictly decreasing in the whole domain $D_{f}=[0,10]$. Hence $D_{g}=V_{f}=[18,20]$ and $V_{g}=D_{f}=[0,10]$.
b) We solve the equation $y=e^{-0.1 x}+3$ for x and get $x=-10 \ln (y-3)$, that is $g(x)=-10 \ln (x-3)$. We have that $f(0)=4, f(x)$ is strictly decreasing in the whole domain and the line $y=3$ is a horizontal asymptote for $f(x)$. At the same time $f(x)>3$ for all x. Hence $D_{g}=V_{f}=\langle 3,4]$ and $V_{g}=D_{f}=[0, \rightarrow\rangle$.

Problem 9

All second degree polynomial functions can be written as $f(x)=a(x-s)^{2}+d$ where $x=s$ is the symmetry line and d is the maximum value $f(s)$ if $a<0$. Hence we get $f(x)=a(x-70)^{2}+200$ for a parameter $a<0$.

Problem 10

All hypebola functions can be written as $f(x)=c+\frac{a}{x-b}$ where $x=b$ is the vertical asymptote and $y=c$ is the horizontal asymptote. Hence $f(x)=11+\frac{a}{x-9}$ and $f(4)=11+\frac{a}{4-9}=11-0.2 a$ which is given to be 12 . Solving the equation $11-0.2 a=12$ for a we get $a=-5$. That is $f(x)=11-\frac{5}{x-9}$. The graph intersects the y-axis in the point $(0, f(0))=\left(0, \frac{104}{9}\right)$ and the x-axis in the point $\underline{\left(\frac{104}{11}, 0\right)}$. Here $x=\frac{104}{11}$ is the solution of the equation $f(x)=0$.

Problem 11

From the standard ellipse equation we get

$$
\frac{(x-5)^{2}}{9}+\frac{(y-6)^{2}}{16}=1
$$

The line has equation $x+y=10$ which gives $y=10-x$. Substituting for y in the ellipse equation we get

$$
\frac{(x-5)^{2}}{9}+\frac{(4-x)^{2}}{16}=1
$$

which gives

$$
25 x^{2}-232 x=-400
$$

which has solutions

$$
x=\frac{116 \pm 24 \sqrt{6}}{25}
$$

Inserted into $y=10-x$ we get

$$
y=10-\left(\frac{116 \pm 24 \sqrt{6}}{25}\right)=\frac{134 \mp 24 \sqrt{6}}{25}
$$

which gives the points

$$
\underline{\left(\frac{116-24 \sqrt{6}}{25}, \frac{134+24 \sqrt{6}}{25}\right)} \text { and } \underline{\left.\underline{\left(\frac{116+24 \sqrt{6}}{25}\right.}, \frac{134-24 \sqrt{6}}{25}\right)}
$$

[^0]: ${ }^{1}$ Exam code EBA29101

