EXAMINATION QUESTION PAPER - Course paper

EBA 29101 Mathematics for Business Analytics

Department of Economics				
Start date:	05.03.2021	Time 09.00		
Finish date:	12.03.2021	Time 12.00		
Weight:	Pass / Fail			
Total no. of pages:	3 incl. front page			
No. of attachments files to question paper:	0			
To be answered:	Individually			
Answer paper size:	No limit. excl. attachments			
Max no. of answer paper attachment files:	0			
Allowed answer paper file types:	pdf			
Re-sit	Ordinary			

Term paper - EBA2911¹ Mathematics for Business Analytics

5 March – 12 March 2021

The problem set has 2 pages. All 25 subproblems have equal weight. To pass 60% score is required. You are required to give reasons for all answers.

Your answers should be provided digitally, as a .pdf file. You are encouraged to write with a pen (almost always the best) and scan your paper. Check that the resulting file is easy to read, pencil writing can result in weak scans. For more information, see: https://portal.bi.no/en/examination/digital-examination/digital-submission/

Problem 1

a) Calculate the sum

 $5\,000 \cdot 1.002^{60} + 5\,000 \cdot 1.002^{59} + 5\,000 \cdot 1.002^{58} + \dots + 5\,000 \cdot 1.002$

Describe a financial situation where the sum is used.

b) Calculate the sum

5000	5000	5000	5 000
$\frac{1}{\rho^{0.002}}$ +	$\frac{1}{\rho^{0.004}}$	$+\frac{1}{\rho^{0.006}}+\cdot$	$\cdots + \frac{1}{\rho^{0.12}}$

Describe a financial situation where the sum is used.

Problem 2

We have the cash flow

Year	0	1	2	8
Payment	-18	-25	-15	95

Suppose the discount rate is 12%.

- a) Calculate the present value of the cash flow.
- b) Calculate the future value of the cash flow after 7 years.
- c) Suggest an extra payment after 7 years such that the internal rate of return of the cash flow becomes 12%.

Problem 3

- a) Suppose 30 million is paid after 7 years. Let *r* be the interest which gives 15 million as the present value of the payment (with continuous compounding). Calculate *r*.
- b) Suppose instead that the 30 million is paid after 10 years. Explain why the interest *R* which gives 15 million as the present value of the payment (with continuous compounding) is given as $R = 0.7 \cdot r$.

Problem 4

Solve the equations.

a) $\sqrt{2x+3} = x-6$ b) $e^2(\ln(x)-3)(x^2-400)(e^x+3) = 0$ c) $\frac{\ln(x)}{\ln(x)-10} = 11$ d) $x^{-6}-6x^{-3} = 16$

¹Exam code EBA29101

Problem 5

a) Determine the values of t such that the equation $\frac{e^x}{e^x+1} = t$ has solutions for x.

b) Solve the equation for *x* with these values of *t*.

Problem 6

Solve the inequalities.

a)
$$\frac{2x - x^2}{x - 5} \le 0$$

b) $\frac{x - 9}{(x + 3)(x - 4)} \le 1$
c) $\ln(5x + 20) \le 3$
d) $e^{0.3x} \le 170e^{-0.1x}$
e) $(4 - x^2) \cdot e^x \cdot \ln(5 - x) \ge 0$

Problem 7

We have $f(x) = 3x^3 - 7x^2 - 10x + 14$ and g(x) = (x - 1)(x - 3). a) Calculate the remainder of the polynomial division f(x) : g(x).

b) Determine the asymptotes of the rational function $\frac{f(x)}{g(x)}$.

Problem 8

Determine the inverse function g(x). Also determine the domain of definition D_g and the range R_g . a) f(x) = -0.2x + 20 with domain of definition $D_f = [0, 10]$. b) $f(x) = e^{-0.1x} + 3$ with domain of definition $D_f = [0, \rightarrow)$.

Problem 9

Write the expression for all second degree polynomial functions f(x) with maximum point x = 70 and maximal value y = 200.

Problem 10

We have a hyperbola function f(x) with vertical asymptote x = 9 and horizontal asymptote y = 11. Moreover, f(4) = 12. Determine where the graph of f(x) intersects the *x*-axis and where it intersects the *y*-axis.

Problem 11

The ellipse *E* has centre (5, 6), horizontal semi-axis 3 and vertical semi-axis 4. The line *L* goes through the points (0, 10) og (10, 0). Determine where *E* and *L* intersects.