Multiple choice exam EBA29102 - Mathematics for Business Analytics 10 May 2022

SOLUTIONS

Problem	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Right answer	D	С	С	А	А	D	В	С	С	А	D	С	D	С	С

Problem 1

We complete the square and get $x^2 + 2x + 2 = (x + 1)^2 + 1 \ge 1$ so the equation $x^2 + 2x + 2 = 0$ has no solutions.

The right answer is **D**.

Problem 2

With $f(x) = xe^x$ we use the product rule and get $f'(x) = e^x + xe^x = (x+1)e^x$. The equation f'(x) = 0 has the solution x = -1. The right answer is **C**.

Problem 3

The interest formula gives $S = 500\,000 \cdot e^{8r}$. We get $500\,000 \cdot e^{8 \cdot 1.9} = 582\,080$. The right answer is **C**.

Problem 4

Because f(x) is continuous and defined on the closed interval $D_f = [0, 4]$ there are both global maximum points and minimum points for the function. They are either end points or stationary points in D_f . We have $f'(x) = -3x^2 + 12x - 9 = -3(x^2 - 4x + 3) = -3(x - 1)(x - 3)$ so the stationary points are x = 1 and x = 3 which both are contained in D_f . We calculate f(0) = 10, f(1) = 6, f(3) = 10 and f(4) = 6.

The right answer is A.

Problem 5

The sum of the present values of the $25 \cdot 12 = 300$ payments is

$$\frac{9\,000}{1.002^{36}} + \frac{9\,000}{1.002^{37}} + \dots + \frac{9\,000}{1.002^{335}} = \frac{9\,000}{1.002^{335}} \cdot \frac{1.002^{300} - 1}{0.002}$$

where we use the formula for the sum of a geometric series with $a_1 = \frac{9000}{1.002^{335}}$, k = 1.002 og n = 300.

The right answer is A.

Problem 6

We read off $f(1) \approx 1.6$ and $f(3) \approx 0.95$. Moreover, f'(x) gives the slope of the tangents of the graph of f(x). We see that f'(2) < 0 while f'(4) > 0. Because the graph seems to be concave for x in the interval [4, 5] we have f''(x) < 0 which means f'(x) is decreasing in this interval. Hence the claims (A)-(C) are correct.

The right answer is **D**.

Problem 7

To solve the inequality $\frac{x+5}{x-3} < x$ we subtract *x* from both sides and make a common denominator for the fractions:

$$\frac{x+5}{x-3} - x < 0 \qquad \text{i.e.} \qquad \frac{x+5-x(x-3)}{x-3} < 0 \qquad \text{i.e.} \qquad \frac{-x^2+4x+5}{x-3} < 0$$

We have $-x^2 + 4x + 5 = -(x^2 - 4x - 5) = -(x + 1)(x - 5)$ which gives the inequality in factorised form: -(x+1)(x-5)

$$\frac{(x+1)(x-5)}{x-3} < 0 \qquad \text{i.e.} \qquad \frac{(x+1)(x-5)}{x-3} > 0$$

By a sign diagram we get the the solutions -1 < x < 3 or x > 5. The right answer is **B**.

Problem 8

We have D'(p) = -5 and then

$$\varepsilon(p) = \frac{D'(p) \cdot p}{D(p)} = \frac{-5p}{180 - 5p} = \frac{p}{p - 36}$$

The demamnd is inelastic if $\varepsilon(p) > -1$ i.e. $\frac{p}{p-36} > -1$. To solve the inequality we add 1 on both sides and find a common denominator for the fractions:

$$\frac{p}{p-36} + 1 > 0$$
 i.e. $\frac{2p-36}{p-36} > 0$

Because 0 , the denominator is negative. The fraction is therefore positive exactly forthose *p* such that 2p - 36 < 0, i.e. p < 18. The right answer is C.

Problem 9

In the standard form $f(x) = a(x-s)^2 + d$ we have s = 11 and d = 30, i.e. $f(x) = a(x-11)^2 + 30$. From the graph we also observe f(16) = 25, i.e. $a(16 - 11)^2 + 30 = 25$ i.e. a = -0.2 and $f(x) = -0.2(x-11)^2 + 30$. Then f'(x) = -0.4(x-11) and f'(21) = -0.4(21-11) = -4. The right answer is C.

Problem 10

In the standard form $f(x) = c + \frac{a}{x-b}$ we have b = 20 and c = 50, i.e. $f(x) = 50 + \frac{a}{x-20}$. Then f(30) = 49 gives the equation $50 + \frac{a}{30-20} = 49$ i.e. a = -10 and $f(x) = 50 - \frac{10}{x-20}$. We differentiate f(x) and get $f'(x) = \frac{10}{(x-20)^2}$ which will be greater than 0 for all $x \neq 20$. The right answer is A.

Problem 11

We try to find a line through the origin which also is a tangent to the graph of K(x). Then the x-value of the tangential point is the cost optimum (the production volume which gives the lowest unit cost). It seems to be close to x = 60.

The right answer is **D**.

Problem 12

We always have that $D_g = R_f$, the range of f(x). We have $f'(x) = -\frac{1}{x}$ which is negative in the domain D_f . Hence f(x) is a (strictly) decreasing function. Because $f(e^5) = 0$ while $f(x) \longrightarrow \infty$ if $x \longrightarrow 0^+$ we get $D_g = R_f = [0, \rightarrow)$.

The right answer is C.

Problem 13

f(x) is concave in those intervals where $f''(x) \le 0$, i.e. where $e^x \le 2$ i.e. for $x \le \ln(2)$. f(x) is convex in those intervals where $f''(x) \ge 0$, i.e. where $e^x \ge 2$ i.e. for $x \ge \ln(2)$. The right answer is **D**.

Problem 14

We differentiate f(x) three times to find $P_3(x)$: $f'(x) = x^{-1}$, $f''(x) = -x^{-2}$ and $f'''(x) = 2x^{-3}$. It gives f(1) = 0, f'(1) = 1, f''(1) = -1 and f'''(1) = 2. Then $P_3(x) = (x - 1) - \frac{(x - 1)^2}{2} + \frac{(x - 1)^3}{3}$. In particular, $P_3(2) = \frac{5}{6} \approx 0.83$. The right answer is **C**.

Problem 15

We differentiate (implicitly) both sides of the equation with respect to x and get $\frac{10yy'}{y^2+1} = 1$. We solve for y' and get

$$y' = \frac{y^2 + 1}{10y}$$

If y = 1 we get $x = 5 \ln(1^2 + 1) + 10 = 5 \ln(2) + 10$ and $y' = \frac{1^2 + 1}{10 \cdot 1} = 0.2$. The right answer is **C**.