EBA 29103

Mathematics for Business Analytics

Department of Economics	
Start date:	13.03.2020 Time 09.00
Finish date:	20.03.2020 Time 12.00
Weight:	Pass / Fail
Total no. of pages:	3 incl. front page
No. of attachments files to question paper:	0
To be answered:	Individually
Answer paper size:	No limit. excl. attachments
Max no. of answer paper attachment files:	0
Allowed answer paper file types:	pdf

The problem set consists of two pages. All 24 subquestion have equal weight, and at least 60% score is required to pass. You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers.

Your answers should be provided as a single file in PDF format. You are encouraged to write with a pen and scan your paper. Check that the resulting file is easy to read. For more information, see https://portal.bi.no/en/examination/digital-examination/digital-submission/.

Question 1.

Compute the indefinite integrals:
a) $\int \frac{1}{\sqrt{x}} \mathrm{~d} x$
b) $\int \frac{1-x}{x^{2}} \mathrm{~d} x$
c) $\int \frac{x^{2}}{1-x} d x$
d) $\int 16(3-x)^{7} \mathrm{~d} x$

Question 2.

Use Gaussian elimination to solve the linear systems. Show elementary row operations, mark the pivot positions in the echelon form, and specify the number of solutions.
а) $\begin{aligned} x-2 y+3 z & =6 \\ 2 x & -z\end{aligned}$
b) $\begin{aligned} x+2 y+4 z & =5 \\ -3 x+y+5 z & =-5\end{aligned}$
$-x-2 y+6 z=7$
b) $\begin{aligned}-3 x+y+5 z & =-5 \\ 5 x+3 y+3 z & =15\end{aligned}$

Question 3.

We consider the function given by

$$
f(x)=\frac{\sqrt{x}+1}{x+3}
$$

a) Compute $f^{\prime}(x)$, and determine when f is increasing and decreasing.
b) Find the maximum and minimum value of f, if they exist.

Question 4.

We consider the matrices A, E_{1}, E_{2} og E_{3} given by

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & -1 \\
-3 & 1 & 4
\end{array}\right), \quad E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right), \quad E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -4 & 1
\end{array}\right)
$$

Compute the following expressions:
a) A^{-1}
b) $A^{T} \cdot A$
c) $E_{3} \cdot E_{2} \cdot E_{1} \cdot A$

Question 5.

Compute the integrals:
a) $\int_{-1}^{1}|x| \mathrm{d} x$
b) $\int_{1}^{\infty} \frac{1}{x^{3}} d x$
c) $\int_{-\infty}^{\infty} x e^{-x^{2} / 2} \mathrm{~d} x$

Question 6.

A linear system $A \mathbf{x}=\mathbf{b}$ has coefficient matrix A given below. Compute the determinant $|A|$, and determine when the linear system has exactly one solution:
a) $A=\left(\begin{array}{lll}1 & 1 & a \\ 2 & a & 4 \\ 1 & 1 & 3\end{array}\right)$
b) $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & a & a \\ a & 1 & a\end{array}\right)$
c) $A=\left(\begin{array}{ccc}t & 1 & t \\ 1 & t & -1 \\ t & -1 & t\end{array}\right)$

Question 7.

Compute the indefinite integrals:
a) $\int 5 x \sqrt{x} \ln (x) \mathrm{d} x$
b) $\int \frac{x}{e^{x}} \mathrm{~d} x$
c) $\int \frac{2 x+2}{4-x^{2}} \mathrm{~d} x$
d) $\int \frac{\sqrt{x}}{1-\sqrt{x}} \mathrm{~d} x$

Question 8.

We consider the linear system $A \mathbf{x}=\mathbf{b}$ when the matrix A and the vectors \mathbf{x} and \mathbf{b} are given by

$$
A=\left(\begin{array}{ccc}
t & 1 & 1 \\
2 & 1 & t \\
4 & t & 2
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
t \\
4
\end{array}\right)
$$

Determine how many solutions the linear system has for all values of the parameter t, and find all solutions when the system is consistent. Use Kramer's rule when the system has a unique solution.

Question 9.

We consider the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ and the matrix A with these four vectors as columns:

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
3
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
3 \\
-1 \\
2 \\
1
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
2 \\
0 \\
4 \\
3
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{c}
1 \\
12 \\
5 \\
16
\end{array}\right), \quad A=\left(\begin{array}{cccc}
1 & 3 & 2 & 1 \\
2 & -1 & 0 & 12 \\
1 & 2 & 4 & 5 \\
3 & 1 & 3 & 16
\end{array}\right)
$$

a) Determine whether any of the vectors can be written as a linear combination of the other vectors. If this is the case, write down one such expression.
b) Compute $\operatorname{det}\left(A^{T} A\right)$.

