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Solutions EBA 29103 Mathematics for Business Analytics
Date March 22th 2021 at 1200

Each sub-question has maximal score 6p, and the exam has maximal score 144p. To pass the exam,
a score of approximately 86p is required. You may self-assess and use the table below to enter your
scores. When we evaluate your answers, we emphasize the choice of method (you should give reasons
based on theory where it is necessary), and the execution (that the computations are correct). To
obtain the correct answer is less important, and there are in most cases alternative ways of writing
the answer that will give full score.

Question 1. 2. 3. 4. 5. 6. 7. 8. 9. Total Grade A B C D E

Points 24 12 24 18 12 6 18 18 12 144 Limits 130 110 84 66 58
Score

Question 1. 24 P.∫
10x
√
x dx =

∫
10x3/2 dx = 10(2/5)x5/2 + C = 4x2

√
x + C 6 P.a) ∫

2x−1
x2 dx =

∫
2/x− x−2 dx = 2 ln |x|+ x−1 = 2 ln |x|+ 1/x + C 6 P.b) ∫

4x(1− x2) dx =
∫

4x− 4x3 dx = 2x2 − x4 + C 6 P.c) ∫
12(1 + 4x)2 dx =

∫
12u2 · 1/4 du = u3 + C = (1 + 4x)3 + C 6 P.d)

Question 2. 12 P.

(a) We write down the aumented matrix of the system, mark the first pivot position, and make
elementary row operations using the first pivot to eliminate the entries below it:1 2 −1 3

5 8 −2 23
2 6 −5 6

 →

1 2 −1 3
0 −2 3 8
2 6 −5 6

 →

1 2 −1 3
0 −2 3 8
0 2 −3 0


We mark the pivot position in the second row, and use it to eliminate the number below it:1 2 −1 3

0 −2 3 8
0 2 −3 0

 →

1 2 −1 3
0 −2 3 8
0 0 0 8

 3 P.

We obtain an echelon form, and we see that there is an echelon in the last column. Hence
there are no solutions. 3 P.

(b) We write down the aumented matrix of the system, mark the first pivot position, and make
elementary row operations using the first pivot to eliminate the entries below it:1 2 4 1 11
4 9 12 −1 40
5 10 16 1 51

 →

1 2 4 1 11
0 1 −4 −5 −4
5 10 16 1 51

 →

1 2 4 1 11
0 1 −4 −5 −4
0 0 −4 −4 −4


We mark the pivot position in the second row and third row, and notice that we have an
echelon form: 1 2 4 1 11

0 1 −4 −5 −4
0 0 −4 −4 −4

 3 P.

Hence there are infinitely many solutions, with w free since there is no pivot in the w-column.
We find them by back substitution:

−4z − 4w = −4 ⇒ −4z = −4 + 4w z = 1− w

y − 4z − 5w = −4 ⇒ y = 4(1− w) + 5w − 4 y = w

x + 2y + 4z + w = 11 ⇒ x = 11− 2(w)− 4(1− w)− w x = 7 + w

The solutions are (x,y,z,w) = (7 + w,w,1− w,w) where w is a free variable. 3 P.
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Question 3. 24 P.

(a) We use the substitution u = 1 + ex, which gives du = u′ dx = ex dx. 3 P. This gives∫
ex

1 + ex
dx =

∫
ex

u

du

ex
=

∫
1

u
du = ln |u|+ C = ln(1 + ex) + C 3 P.

(b) We factorize the denominator as 1− 4x2 = (1 + 2x)(1− 2x), and simplify the expression using
partial fractions. This gives

1− x

1− 4x2
=

A

1 + 2x
+

B

1− 2x
⇒ 1− x = A(1− 2x) + B(1 + 2x)

Hence 1− x = (A + B) + (2B − 2A)x, or A + B = 1 and 2B − 2A = −1. This linear system
gives B = 1/4 and A = 3/4, 3 P. and the integral becomes∫

1− x

1− 4x2
dx =

∫
3

4

1

1 + 2x
+

1

4

1

1− 2x
dx =

3

4

1

2
ln |1 + 2x|+ 1

4

1

(−2)
ln |1− 2x|+ C

=
3

8
ln |1 + 2x| − 1

8
ln |1− 2x|+ C 3 P.

(c) We use the substitution u = lnx, which gives du = (1/x) dx, 3 P. and this gives∫
3(lnx)2

x
dx =

∫
3u2

x
· du

1/x
=

∫
3u2 du = u3 + C = (lnx)3 + C 3 P.

Alternatively, we may use integration by parts with u′ = 1/x and v = (lnx)2.

(d) We use the substitution u = −x
√
x = −x3/2, which gives du = u′ dx = (−3/2)x1/2 dx. This

gives∫
6x2 e−x

√
x dx =

∫
6x2 eu

du

(−3/2)x1/2
=

∫
−4x3/2 eu du =

∫
4ueu du 3 P.

= 4ueu −
∫

4eu du = 4ueu − 4eu + C = (−4x
√
x− 4)e−x

√
x + C 3 P.

To go from the first to the second line, we use integration by parts.

Question 4. 18 P.

(a) The determinant is given by

|A| =
∣∣∣∣6 2a
a 3

∣∣∣∣ = 18− 2a2 = 2(9− a2) = 2(3− a)(3 + a) 3 P.

Hence |A| = 0 when a = ±3. 3 P.
(b) We compute the determinant of A using cofactor expansion along the first row:

|A| =

∣∣∣∣∣∣
1 1 s
1 2 s
s 3 9

∣∣∣∣∣∣ = 1(18− 3s)− 1(9− s2) + s(3− 2s) = −s2 + 9 = (3− s)(3 + s) 3 P.

Hence |A| = 0 when s = ±3. 3 P.
(c) We compute the determinant of A using cofactor expansion along the first row:

|A| =

∣∣∣∣∣∣
t 1 4
1 t 4
1 4 t

∣∣∣∣∣∣ = t(t2 − 16)− 1(t− 4) + 4(4− t) = (t− 4) [t(t + 4)− 1− 4]

= (t− 4)(t2 + 4t− 5) = (t− 4)(t− 1)(t + 5) 3 P.

We have factored out (t−4), which is a common factor in all three terms. Hence |A| = 0 when
t = 1, t = 4, t = −5. 3 P.
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Question 5. 12 P.

(a) Since x2−3x+2 = (x−1)(x−2), we have vertical asymptotes x = 1 and x = 2. 1 P. Polynomial
division gives f(x) = x + 3− 6/(x2 − 3x + 2), hence f has a skew asymptote L with equation
y = x + 3. 2 P. The figure is shown above. 3 P.

(b) We see that the zeros of f are given by x3 − 7x = 0, or x = 0 and x = ±
√

7. The region R in
the second quadrant bounded by the graph of f and the x-axis can be found in the interval
−
√

7 ≤ x ≤ 0, and it has area given by

A =

∫ 0

−
√
7
f(x) dx =

∫ 0

−
√
7
x + 3− 6

(x− 1)(x− 2)
dx

=

[
1

2
x2 + 3x

]0
−
√
7

−
∫ 0

−
√
7

6

(x− 1)(x− 2)
dx 3 P.

The first term is given by[
1

2
x2 + 3x

]0
−
√
7

= 0− (7/2− 3
√

7) = 3
√

7− 7/2

To compute the last integral, we use partial fractions:

6

x2 − 3x + 2
=

A

x− 1
+

B

x− 2
⇒ 6 = A(x− 2) + B(x− 1)

We find the constants A and B by substituting x = 1 and x = 2, and this gives A = −6 and
B = 6. We get∫ 0

−
√
7

6

(x− 1)(x− 2)
dx =

∫ 0

−
√
7

−6

x− 1
+

6

x− 2
dx = [−6 ln |x− 1|+ 6 ln |x− 2| ]0−√7

which gives [
6 ln
|x− 2|
|x− 1|

]0
−
√
7

= 6 ln(2)− 6 ln
2 +
√

7

1 +
√

7

Therefore the area A of the region R is given by

A = 3
√

7− 7/2− 6 ln(2) + 6 ln
2 +
√

7

1 +
√

7
≈ 1.73 3 P.
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Question 6. 6 P.

We first compute the determinant of the coefficient matrix A of the linear system by cofactor expansion
along the first row:

|A| =

∣∣∣∣∣∣
1 2 a
a 3 5
a 0 1

∣∣∣∣∣∣ = a(10− 3a) + 1(3− 2a) = −3a2 + 8a + 3 = (3− a)(1 + 3a) 1 P.

We see that a = 3 and a = −1/3 gives |A| = 0. This means that the system has no solutions or
infinitely many solutions for these three values of a, and exactly one solution otherwise. 2 P. We first
consider the case a = 3, and solve the system by Gaussian elimination:1 2 3 1

3 3 5 3
3 0 1 3

 →

1 2 3 1
0 −3 −4 0
0 −6 −8 0

 →

1 2 3 1
0 −3 −4 0
0 0 0 0


We see that the system has infinitely many solutions for a = 3, with z as a free variable, and the
solutions are given by

−3y − 4z = 0 ⇒ y = −4z/3 og x + 2y + 3z = 1 ⇒ x = 1− 3z − 2(−4z/3) = 1− z/3

Hence the solutions are (x,y,z) = (1− z/3,− 4z/3,z) med z fri when a = 3. 1 P. When a = −1/3, we
solve the system by Gaussian elimination. We first multiply all rows with 3 and switch the first and
last row: 1 2 −1/3 1

−1/3 3 5 −1/3
−1/3 0 1 3

 →

 3 6 −1 3
−1 9 15 −1
−1 0 3 9

 →

−1 0 3 9
−1 9 15 −1

3 6 −1 3


Then we find an echelon form:−1 0 3 9

−1 9 15 −1
3 6 −1 3

 →

−1 0 3 9
0 9 12 −10
0 6 8 30

 →

−1 0 3 −9
0 9 12 8
0 0 0 110/3


Hence, the system has no solutions when a = −1/3. 1 P. When a 6= 3 and a 6= −1/3, there are exactly
one solutions, and we find it using Kramer’s rule:

|A1(b)| =

∣∣∣∣∣∣
1 2 a
a 3 5
3 0 1

∣∣∣∣∣∣ = 33− 11a ⇒ x =
11(3− a)

(3− a)(1 + 3a)
=

11

1 + 3a

|A2(b)| =

∣∣∣∣∣∣
1 1 a
a a 5
a 3 1

∣∣∣∣∣∣ = −a3 + 3a2 + 5a− 15 ⇒ y =
(3− a)(a2 − 5)

(3− a)(1 + 3a)
=

a2 − 5

1 + 3a

|A3(b)| =

∣∣∣∣∣∣
1 2 1
a 3 a
a 0 3

∣∣∣∣∣∣ = 2a2 − 9a + 9 ⇒ z =
(3− a)(3− 2a)

(3− a)(1 + 3a)
=

3− 2a

1 + 3a
1 P.

Question 7. 18 P.

(a) We have that

A2 =

1 1 0
1 0 1
0 1 1

 ·
1 1 0

1 0 1
0 1 1

 =

2 1 1
1 2 1
1 1 2

6 P.

(b) We compute the determinant |A| = 1(−1)−1(1) = −2 using cofactor expansion along the first
row. It follows that

A−1 =
1

−2

−1 −1 1
−1 1 −1
1 −1 −1

T

=
1

2

 1 1 −1
1 −1 1
−1 1 1

6 P.
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(c) We have that

AB + BA =

1 1 0
1 0 1
0 1 1

 ·
0 0 1

0 1 0
1 0 0

+

0 0 1
0 1 0
1 0 0

 ·
1 1 0

1 0 1
0 1 1


=

0 1 1
1 0 1
1 1 0

+

0 1 1
1 0 1
1 1 0

 =

0 2 2
2 0 2
2 2 0

6 P.

Question 8. 18 P.

(a) The present value of the cash flow from renting the property is∫ ∞
0

I(t)e−rt dt =

∫ ∞
0

10 e0.06t e−0.10t dt =

∫ ∞
0

10 e−0.04t dt 3 P.

=

[
10

−0.04
e−0.04t

]∞
0

= lim
b→∞

[
−250 e−0.04t

]b
0

= lim
b→∞

−250(e−0.04b − 1) = 250 3 P.

(b) Let S(t) be the present value of the sale price of the property when we sell it after t years.
Then we have that

S(t) = V (t)e−rt = 250 e
√
t/5 e−0.10t = 250 e(2

√
t−t)/10 1 P.

To maximize S(t), we find the derivative. We use u = (2
√
t− t)/10 as kernel, and find that

S′(t) = 250 eu · u′ = 250 eu · 1

10

(
2

2
√
t
− 1

)
= 25 eu · 1−

√
t√

t
3 P.

Hence S′(t) = 0 when 1 −
√
t = 0, and this gives

√
t = 1, or t = 1. The remaining factors in

the expression for S′(t) are positive, and 1 −
√
t is changing sign from positive to negativ at

t = 1. This means that t = 1 is a maximum point for the function S(t). The present value of
the sale sum is maximal after one year. 2 P.

(c) We have that

N(T ) =

∫ T

0
I(t)e−rt dt + V (T )e−rT 1 P.

The first term is given by∫ T

0
I(t)e−rt dt =

∫ T

0
10 e0.06t e−0.10t dt =

∫ T

0
10e−0.04t dt =

[
10

−0.04
e−0.04t

]T
0

= −250(e−0.04T − 1) = 250(1− e−0.04T )

and the second term is

S(T ) = 250 e(2
√
T−T )/10

Hence the total present value is given by

N(T ) = 250(1− e−0.04T ) + 250 e(2
√
T−T )/10 = 250

(
1− e−0.04T + e(2

√
T−T )/10

)
3 P.

After 0, 1, 2 and 3 year, the total present value is:
N(0) = 250(1− 1 + 1) = 250a)

N(1) = 250(1− e−0.04 + e0.10) ≈ 286.1b)

N(2) = 250(1− e−0.08 + e(
√
2−1)/5) ≈ 290.8c)

N(3) = 250(1− e−0.12 + e(2
√
3−3)/10) ≈ 290.1 1 P.d)

It seems that the total present value is maximal after between 2 and 3 years. 1 P.
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Return A Return B Return C

Scenario 1 −25 25 −150
Scenario 2 50 −75 120
Scenario 3 20 15 20

Question 9. 12 P.

We find the return per share for the different companies and the different scenarios, see the table
above. We use this to express the total return Ri using x,y,z, which gives three linear equations. In
addition, we have the budget condition 100x + 125y + 284z = C, which specify that the total cost is
C = 1.500.000. We find the following linear system and extended matrix:

−25x + 25y − 150z = R1

50x − 75y + 120z = R2

20x + 15y + 20z = R3

100x + 125y + 284z = C

⇒


−25 25 −150 R1

50 −75 120 R2

20 15 20 R3

100 125 284 C


(a) We first solve the system when (R1, R2, R3) = (1.000.000,−2.000.000, 200.000). This gives the

following echelon form:
−25 25 −150 R1

50 −75 120 R2

20 15 20 R3

100 125 284 C

 →


−25 25 −150 R1

0 −25 −180 R2 + 2R1

0 35 −100 R3 + 0.8R1

0 225 −316 C + 4R1



→


−25 25 −150 R1

0 −25 −180 R2 + 2R1

0 0 −352 R3 + 1.4R2 + 3.6R1

0 0 −1936 C + 9R2 + 22R1



→


−25 25 −150 R1

0 −25 −180 R2 + 2R1

0 0 −352 R3 + 1.4R2 + 3.6R1

0 0 0 C − 5.5R3 + 1.3R2 + 2.2R1

 3 P.

Since C = 1.500.000 and (R1, R2, R3) = (1.000.000,−2.000.000, 200.000), the expression C +
2.2R1 + 1.3R2 − 5.5R3 = 0. This means that the system has a unique solution, and there is a
portfolio with the specified returns. 1 P. We find this portfolio by back substitution:

−25x + 25y − 150z = 1.000.000
− 25y − 180z = 0

− 352z = 1.000.000

which gives
(x,y,z) = (−2.500, 20.454 6/11,−2.840 10/11) 2 P.

(b) To find all possible returns (R1, R2, R3), we use the same linear system as above, and obtain
the same echelon form. it follows that the possible returns are the triples (R1, R2, R3) that
satisfy

C + 2.2R1 + 1.3R2 − 5.5R3 = 0 ⇒ −2.2R1 − 1.3R2 + 5.5R3 = 1.500.000 2 P.

There are many solutions with R1, R2, R3 > 0. We choose R1 = R2 = R3 which gives

2R1 = 1.500.000 ⇒ R1 = 750.000

This choice gives R1 = R2 = R3 = 750.000. 2 P. To find the portfolio with these returns, we
solve

−25x + 25y − 150z = 750.000
− 25y − 180z = 2.250.000

− 352z = 4.500.000

by back substitution. This gives

(x,y,z) = (48.750, 2.045 5/11,−12.784 1/11) 2 P.
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