Key Problems

Problem 1.

Compute the definite integrals, and show each of them as an area in a figure:

a)
$$\int_0^4 3 \, dx$$

b)
$$\int_0^8 (10 + 3x) \, dx$$

Problem 2.

Compute the indefinite integrals:

a)
$$\int x^2 dx$$

b)
$$\int (8x^3 - 12x^2) dx$$
 c) $\int (e^x - 6x) dx$ d) $\int (x^2/3 - x^3/2) dx$

c)
$$\int (e^x - 6x) dx$$

d)
$$\int (x^2/3 - x^3/2) \, dx$$

Problem 3.

Find a function f(x) with the given derivative and domain of definition:

a)
$$f'(x) = 2, D_f = (-\infty, \infty)$$

b)
$$f'(x) = 2x, D_f = (-\infty, \infty)$$

a)
$$f'(x) = 2$$
, $D_f = (-\infty, \infty)$ b) $f'(x) = 2x$, $D_f = (-\infty, \infty)$ c) $f'(x) = 6x^2$, $D_f = (-\infty, \infty)$

d)
$$f'(x) = 1/x, D_f = (0, \infty)$$

e)
$$f'(x) = 1/x$$
, $D_f = (-\infty, 0)$

d)
$$f'(x) = 1/x$$
, $D_f = (0, \infty)$ e) $f'(x) = 1/x$, $D_f = (-\infty, 0)$ f) $f'(x) = 1/x$, $D_f = \{x : x \neq 0\}$

Problem 4.

Find a function f(x) with the given properties:

a)
$$\int f(x) dx = 2 + C$$

b)
$$\int f(x) \, \mathrm{d}x = 2x + \mathcal{C}$$

a)
$$\int f(x) dx = 2 + \mathcal{C}$$
 b) $\int f(x) dx = 2x + \mathcal{C}$ c) $\int f(x) dx = 6x^2 + \mathcal{C}$ d) $\int f(x) dx = xe^{2x} + \mathcal{C}$

d)
$$\int f(x) dx = xe^{2x} + C$$

e)
$$\int 2 \, \mathrm{d}x = f(x) + \mathcal{C}$$

f)
$$\int 2x \, \mathrm{d}x = f(x) + \mathcal{C}$$

g)
$$\int 6x^2 dx = f(x) + C$$

e)
$$\int 2 dx = f(x) + \mathcal{C}$$
 f) $\int 2x dx = f(x) + \mathcal{C}$ g) $\int 6x^2 dx = f(x) + \mathcal{C}$ h) $\int xe^{2x} dx = f(x) + \mathcal{C}$

Problem 5.

Determine constants A and B such that

$$\int \frac{(A+Bx) \cdot e^{2x}}{2\sqrt{x}} dx = \sqrt{x} \cdot e^{2x} + C$$

Problem 6.

Compute the indefinite integrals:

a)
$$\int x^{-3} dx$$
 b) $\int \sqrt{x} dx$ c) $\int x\sqrt{x} dx$ d) $\int 1/x dx$ e) $\int 1/x^2 dx$

b)
$$\int \sqrt{x} \, dx$$

c)
$$\int x\sqrt{x} dx$$

d)
$$\int 1/x \, dx$$

e)
$$\int 1/x^2 dx$$

f)
$$\int (x-2x^3) dx$$

g)
$$\int x(1-2x) \, dx$$

f)
$$\int (x-2x^3) dx$$
 g) $\int x(1-2x) dx$ h) $x \int (1-2x) dx$ i) $\int (x+1)^2 dx$ j) $\int (x+1)^7 dx$

i)
$$\int (x+1)^2 \, \mathrm{d}x$$

$$j) \int (x+1)^7 \, \mathrm{d}x$$

Problem 7.

Compute the indefinite integrals:

a)
$$\int \frac{1 - 3x^2}{x^2} \, \mathrm{d}x$$

a)
$$\int \frac{1-3x^2}{x^2} dx$$
 b) $\int \frac{x^3+2x-2}{x} dx$ c) $\int \frac{6x}{1+3x^2} dx$ d) $\int \frac{\sqrt{x}+1}{x^2} dx$

$$c) \int \frac{6x}{1+3x^2} \, \mathrm{d}x$$

$$d) \int \frac{\sqrt{x+1}}{x^2} dx$$

Problem 8.

Compute the indefinite integrals:

a)
$$\int (1 + e^{2x}) dx$$
 b) $\int e^{1+2x} dx$

b)
$$\int e^{1+2x} dx$$

c)
$$\int e^{1-2x} dx$$

d)
$$\int 3^x dx$$

Problem 9.

Compute the indefinite integrals:

a)
$$\int x\sqrt{x^2+1} \, dx$$
 b) $\int 9(x+1)^7 \, dx$ c) $\int xe^{-x^2} \, dx$ d) $\int \frac{x}{1+x^2} \, dx$ e) $\int \frac{\ln x}{x} \, dx$

b)
$$\int 9(x+1)^7 dx$$

c)
$$\int xe^{-x^2} dx$$

$$d) \int \frac{x}{1+x^2} dx$$

e)
$$\int \frac{\ln x}{x} dx$$

Problem 10.

Compute the indefinite integral:

$$\int \frac{e^{1-\sqrt{x}}}{\sqrt{x}} \, \mathrm{d}x$$

Problem 11.

Assume that $f(x) \ge 0$ for all x, and that F(x) is a function such that $\int f(x) dx = F(x) + C$. Is F(x) an increasing function? Explain why/why not.

Problem 12.

We consider the function defined by

$$f(x) = \frac{e^{1-\sqrt{x}}}{\sqrt{x}}, \quad x > 0$$

- a. Compute f'(x).
- b. Show that f is decreasing in the domain of definition $D_f = (0, \infty)$.
- c. Compute the limits

$$\lim_{x \to 0^+} f(x)$$
 and $\lim_{x \to \infty} f(x)$

d. Sketch the graph of f, based on what you found in this problem, and mark the region bounded by the graph of f and the x-axis (for x > 0).

Problem 13.

Write down a sum (based on at least n=10 subintervals) that approximates the definite integral

$$\int_0^1 (1-x^2) dx$$

and show the definite integral and its approximation as areas in a figure.

Problem 14.

Problems from the textbook: 9.1.1 - 9.1.11

Answers to Key Problems

Problem 1.

a) 12

b) 176

Problem 2.

- a) $\frac{1}{3}x^3 + C$
- b) $2x^4 4x^3 + C$
- c) $e^x 3x^2 + \mathcal{C}$
- d) $\frac{1}{9}x^3 \frac{1}{8}x^4 + C$

Problem 3.

- a) f(x) = 2x b) $f(x) = x^2$ c) $f(x) = 2x^3$
- d) $f(x) = \ln(x)$ e) $f(x) = \ln(-x)$ f) $f(x) = \ln|x|$

Problem 4.

- a) f(x) = 0
- b) f(x) = 2
- c) f(x) = 12x
- d) $f(x) = (1+2x)e^{2x}$

- e) f(x) = 2x
- f) $f(x) = x^2$
- g) $f(x) = 2x^3$
- h) $f(x) = (\frac{1}{2}x \frac{1}{4})e^{2x}$

Problem 5.

A = 1, B = 4

Problem 6.

- a) $-\frac{1}{2}x^{-2} + C$
- b) $\frac{2}{3}x\sqrt{x} + C$
- c) $\frac{2}{5}x^2\sqrt{x} + C$
- d) $\ln |x| + \mathcal{C}$

- e) -1/x + C
- f) $\frac{1}{2}x^2 \frac{1}{2}x^4 + C$ g) $\frac{1}{2}x^2 \frac{2}{3}x^3 + C$ h) $x(x x^2 + C)$

- i) $\frac{1}{2}(x+1)^3 + C$
- i) $\frac{1}{8}(x+1)^8 + C$

Problem 7.

- a) -1/x 3x + C
- b) $\frac{1}{3}x^3 + 2x 2\ln|x| + \mathcal{C}$ c) $\ln(1+3x^2) + \mathcal{C}$
- d) $-2/\sqrt{x} 1/x + C$

Problem 8.

- a) $x + \frac{1}{2}e^{2x} + C$
- b) $\frac{1}{2}e^{1+2x} + C$
- c) $-\frac{1}{2}e^{1-2x} + C$
- d) $\frac{1}{\ln 3} \cdot 3^x + \mathcal{C}$

Problem 9.

- a) $\frac{1}{3}(x^2+1)^{3/2}+\mathcal{C}$ b) $\frac{9}{8}(x+1)^8+\mathcal{C}$ c) $-\frac{1}{2}e^{-x^2}+\mathcal{C}$ d) $\frac{1}{2}\ln(1+x^2)+\mathcal{C}$ e) $\frac{1}{2}\ln(x)^2+\mathcal{C}$

Problem 10.

$$-2e^{1-\sqrt{x}} + \mathcal{C}$$

Problem 11.

Since F'(x) = f(x) and $f(x) \ge 0$, it follows that F is an increasing function.

Problem 12.

a.
$$f'(x) = \frac{e^{1-\sqrt{x}}(-\sqrt{x}-1)}{2x\sqrt{x}}$$

b. Since $f'(x) \leq 0$ for x > 0, it follows that f is decreasing

c.
$$\lim_{x \to 0^+} f(x) = \infty$$
, $\lim_{x \to \infty} f(x) = 0$

Problem 13.

We divide [0,1] into n = 10 subintervals of length (1-0)/10 = 1/10, and the points marking these subintervals are given by $x_i = i/10$ for i = 0, 1, 2, ..., 10. Hence $x_0 = 0$, $x_1 = 1/10$, $x_2 = 2/10$ and so on. The definite integral is the area under $f(x) = 1 - x^2$ on the interval [0,1]. We can approximate this as the areal of ten rectangles, given by the sum

$$\sum_{i=0}^{9} f(x_i) \cdot \Delta x_i = \sum_{i=0}^{9} \left(1 - (i/10)^2 \right) \cdot \frac{1}{10} = \left(1 + (1 - 1/100) + (1 - 4/100) + \dots + (1 - 81/100) \right) \cdot \frac{1}{10}$$
$$= \frac{1}{10} \cdot \left(10 - \frac{0 + 1 + 4 + \dots + 81}{100} \right) = 0.715$$

This sum is shown as an area in the figure below. The definite integral is the area under the blue curve, which is a bit smaller than 0.715. The choice n = 10 is not important, but the approximation is better the bigger n is.

Problem 14.

See answers in the textbook.