
Solutions Midterm exam in ELE 3781 Mathematics elective
Deadline November 1st, 2021 at 1200

Question 1.

When the function f(x) is called with a positive integer x > 0 as argument, the function will use
recursion to run through a sequence of numbers with x0 = x and

xi+1 =

{
xi/2 if xi is even

3xi + 1 if xi is odd

It will terminate when it reaches the number 1. For example, if x = 10, then we would run through the
sequence 10, 5, 16, 8, 4, 2, 1. The function f(x) will return the length of this sequence using recursion.
For instance, in the example above, it would return f(10) = 7. Note that there is no guarantee that
the sequence will terminate, but according to Collatz conjecture it should.

Question 2.

(a) We write 64 = 64ei 0
◦

in polar coordinates, and let x = reiθ. This gives r6 = 64 and that
6θ = k ·360◦, or r = 2 and θ = k ·60◦ for k = 0, 1, 2, 3, 4, 5. The complex solutions are therefore
given by

x0 = 2 x1 = 2ei 60
◦

= 1 + i
√

3 x2 = 2ei 120
◦

= −1 + i
√

3

x3 = −2 x4 = 2ei 240
◦

= −1− i
√

3 x5 = 2ei 300
◦

= 1− i
√

3

(b) We let u = x3, write the equation as u2 + u+ 1 = 0, and use the quadratic formula to find u:

u =
−1±

√
1− 4

2
=
−1± i

√
3

2

We write these solutions in polar coordinates as u = ei 120
◦

and u2 = ei 240
◦
. With x = eiθ,

consider the equation x3 = u, which gives 3θ = 120◦ + k · 360◦, or θ = 40◦ + k · 120◦ for
k = 0, 1, 2. Then we consider x3 = u2, which gives 3θ = 240◦ + k · 360◦, or θ = 80◦ + k · 120◦

for k = 0, 1, 2. Combining these cases, we find the solutions

x0 = ei 40
◦

x1 = ei 80
◦

x2 = ei 160
◦

x3 = ei 200
◦

x4 = ei 280
◦

x5 = ei 320
◦

(c) The eigenvalues of A are given by the characteristic equation −λ3 + c1λ
2− c2λ+ c3 = 0, where

c1 = tr(A) = 2, c2 = 5 + (−8) + 7 = 4 (the sum of principal 2-minors), and c3 = |A| = 0.
Hence we get the equation

−λ3 + 2λ2 − 4λ = −λ(λ2 − 2λ+ 4) = 0

and the complex eigenvalues are λ = 0 and λ = (2±
√

4− 16)/2 = 1± i
√

3. For λ = 0, we get
the eigenspace E0 = Null(A), and since

A =

1 −1 −3
2 3 1
3 2 −2

 →

1 −1 −3
0 5 7
0 5 7

 →

1 −1 −3
0 5 7
0 0 0


is an echelon form of A, we get that z is free, 5y + 7z = 0, or y = −7z/5, and x− y − 3z = 0,
or x = y + 3z = −7z/5 + 3z = 8z/5. Hence the vector v1 = (8,−7, 5) is a base of E0, and all
real multiples tv1 with t ∈ R are real eigenvectors of A. For the eigenvalues λ = 1± i

√
3, the

eigenspaces are

E1+i
√
3 = Null

−i√3 −1 −3

2 2− i
√

3 1

3 2 −3− i
√

3


and

E1−i
√
3 = Null

i√3 −1 −3

2 2 + i
√

3 1

3 2 −3 + i
√

3


1

and we see that they do not contain any real eigenvectors. In the first case, if (x, y, z) is a real
vector solution, then we have

−i
√

3x− y − 3z = 0, 2x+ (2− i
√

3)y + z = 0, 3x+ 2y + (−3− i
√

3)z = 0

The first equation implies that x = 0 since −i
√

3x = y + 3z is real. Similarly, the second and
third equation implies that y = 0 and z = 0. Hence there are no real eigenvectors (x, y, z).
The second case is similar.

Question 3.

See below for the python code for reduced(matrix). We get the following results when using this
function on the matrices A and B:

(a) Reduced echelon form of A:

A =

1 1 1 3 −1
1 2 4 7 3
2 3 5 10 2

 →

1 0 −2 −1 −5
0 1 3 4 4
0 0 0 0 0


(b) Reduced echelon form of B:

B =


1 3 1
1 4 3
2 3 5
−1 10 2

 →


1 0 0
0 1 0
0 0 1
0 0 0


Python code: Gauss-Jordan elimination

import numpy as np

Elementary row operations

def Rswitch(matrix,i,j):

r = matrix[i-1].copy()

matrix[i-1] = matrix[j-1]

matrix[j-1] = r

return(matrix)

def Rmult(matrix,i,c):

matrix[i-1]=matrix[i-1]*c

return(matrix)

def Radd(matrix,i,j,c):

matrix[j-1]=matrix[j-1] + c*matrix[i-1]

return(matrix)

A simple version of Gauss that will find an echelon form

def Gauss(matrix):

check the number of rows

if matrix.shape[0]<=1:

return(matrix)

get the leftmost column, nonzero positions

lcol = matrix[:,0]

nz = np.arange(lcol.size)[lcol != 0]

when zero column, move to next column, if any

if nz.size==0:

if matrix.shape[1]<=1:
2

return(matrix)

Gauss(matrix[:,1:])

return(matrix)

find first non-zero entry in column

p=nz[0]

if p!=0:

Rswitch(matrix,1,p+1)

get zeros under the pivot

for r in range(1,lcol.size):

Radd(matrix,1,r+1,-matrix[r,0]/matrix[0,0])

if matrix.shape[1]<=1:

return(matrix)

if there is anything left to do after deleting first row/column, call recursively

Gauss(matrix[1:,1:])

return(matrix)

A version of reduced that will find a reduced echelon form

def reduced(matrix):

first find an echelon form

Gauss(matrix)

m = matrix.shape[0]

n = matrix.shape[1]

go through the rows in reverse order

for r in range(m,0,-1):

nz = np.arange(n)[matrix[r-1,:] != 0]

skip zero rows

if nz.size == 0:

continue

find the pivot position in row r

p = nz[0]

make the pivot = 1

Rmult(matrix,r,1/matrix[r-1,p])

make all entries over the pivot zero

for i in range(1,r):

Radd(matrix,r,i,-matrix[i-1,p]/matrix[r-1,p])

return(matrix)

Some tests that you can run

A = np.array([[1,1,1,3,-1],[1,2,4,7,3],[2,3,5,10,2]])

B = np.array([[1,3,1],[1,4,3],[2,3,5],[-1,10,2]])

find reduced echelon form of A

print(reduced(A))

find reduced echelon form of B

print(reduced(B))

3

