
Solutions Midterm exam in ELE 3781 Mathematics elective
Deadline October 31st, 2022 at 1200

Question 1.

The function f returns the Leslie matrix defined by the vectors a (fertility rates) and b (survival rates).
The function g computes the dominant eigenvalue of the given matrix, and returns the corresponding
eigenvector (the Frobenius vector) as a real vector with column sum 1.

The next two lines compute the Leslie matrix of the given data, and its Frobenius vector as a column
vector. The following three lines of code computes an initial vector v, with constant value 10 in each
state, as a column vector. Finally, the for-loop computes Av, A2v, . . . , A11v from v, forms the matrix
with these vectors as columns, and the final line of code transforms this matrix into a DataFrame
data type.

import numpy as np

import pandas as pd

a = np.array([0,0,0.3964,1.4939,2.1777,2.5250,2.6282,2.6749,2.6018,2.4419,2.1865,

1.9044,1.7259,1.4918,1.2415,0.9522,0.7141,0.4618,0.2518,0.0901,0.0035])

b = np.array([0.94697,0.99665,0.99926,0.99899,0.99863,0.99817,0.99753,0.99667,0.99553,

0.99399,0.99196,0.98926,0.98572,0.98107,0.97511,0.96748,0.95797,0.94631,

0.93247,0.91649])

n = a.shape[0]

def f(a,b):

matrix = np.zeros((n,n))

matrix[0] = a

for i in range(n-1):

matrix[i+1,i] = b[i]

return(matrix)

def g(matrix):

c,d = np.linalg.eig(matrix)

dominant = max(abs(c)).astype(np.complex)

e = d[:,c == dominant].real

e = e/e.sum()

return(e)

A = f(a,b)

np.reshape(g(A),(1,n))

initial = 10

v = np.zeros((1,n)) + initial

v = np.reshape(v,(n,1))

m = 12

rows = v.shape[0]

for i in range(m-1):

last = v.shape[1]

w = np.reshape(v[:,last-1],(rows,1))

v = np.append(v,A.dot(w),axis=1)

u = pd.DataFrame(np.transpose(v))
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Question 2.

(a) We let u = x3, write the equation as u2 − u+ 1 = 0, and use the quadratic formula to find u:

u =
1±
√

1− 4

2
=

1± i
√

3

2

We write these solutions in polar coordinates as u1 = ei 60
◦

and u2 = e−i 60
◦
. With x = eiθ,

consider the equation x3 = u1, which gives 3θ = 60◦ + k · 360◦, or θ = 20◦ + k · 120◦ for
k = 0, 1, 2. Then we consider x3 = u2, which gives 3θ = −60◦ + k · 360◦, or θ = −20◦ + k · 120◦

for k = 1, 2, 3. Combining these cases, we find the solutions

x0 = ei 20
◦

x1 = ei 100
◦

x2 = ei 140
◦

x3 = ei 220
◦

x4 = ei 260
◦

x5 = ei 340
◦

(b) The eigenvalues of A are given by the characteristic equation −λ3 + c1λ
2 − c2λ + c3 = 0,

where c1 = tr(A) = 6, c2 = −1 + (−5) + (−1) = −7 (the sum of the principal 2-minors), and
c3 = |A| = 0 (by a direct computation, or by the fact that A does not have maximal rank; see
the computation of the null space of A below). Hence we get the equation

−λ3 + 6λ2 + 7λ = −λ(λ2 − 6λ− 7) = −λ(λ− 7)(λ+ 1) = 0

and the eigenvalues are λ = 0, λ = 7, and λ = −1.
(c) The (complex) null space Null(A) is given by the echelon form

A =

 1 1− i 2 + i
1 + i 1 3i
2− i −3i 4

→
1 1− i 2 + i

0 −1 −1
0 −1 −1

→
1 1− i 2 + i

0 −1 −1
0 0 0


Hence z is free, −y− z = 0, or y = −z, and x = −(1− i)(−z)− (2 + i)z = (−1− 2i)z, and the
complex null space is one-dimensional with base given by (−1− 2i,−1, 1).

Question 3.

(a) We find a right echelon form of A, and mark the right pivots:

A =


1 0 2 1
3 2 0 −1
4 2 2 0
1 −2 8 5

→


1 0 2 1
4 2 2 0
4 2 2 0
−4 −2 −2 0

→


1 0 2 1
4 2 2 0
0 0 0 0
0 0 0 0


The null space is given by the equations x+ 2z +w = 0 and 4x+ 2y + 2z = 0, where x and y
can be considered as free variables, hence z = −2x− y and w = −x− 2(−2x− y) = 3x+ 2y.
It follows that the vectors in NullA are given by

(x, y, z, w) = (x, y,−2x− y, 3x+ 2y) = x(1, 0,−2, 3) + y(0, 1,−1, 2)

(b) We find a right echelon form of A, and mark the right pivots:

A =


3 1 4 −1
1 1 2 1
4 2 7 0
−1 1 0 4

→


3 1 4 −1
4 2 6 0
4 2 7 0
11 5 16 0

→


3 1 4 −1
0 0 −1 0
4 2 7 0
11 5 16 0



→


3 1 4 −1
0 0 −1 0
4 2 0 0
11 5 0 0

→


3 1 4 −1
0 0 −1 0
4 2 0 0
1 0 0 0


Since there is a right pivot in every column, we have that NullA = 0.
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Question 4.

See below for the python code for rechelon(matrix). We get the following results when using this
function on the matrices A and B:

(a) Reduced echelon form of A:

A→

1 1 1 3 −1
4 5 7 16 0
0 0 0 0 0


(b) Reduced echelon form of B:

B →


1 3 1
−2 −5 0
1.8 0 0
0 0 0


# Python code: right Gaussian elimination

import numpy as np

# Elementary row operations

def Rswitch(matrix,i,j):

r = matrix[i-1].copy()

matrix[i-1] = matrix[j-1]

matrix[j-1] = r

return(matrix)

def Rmult(matrix,i,c):

matrix[i-1]=matrix[i-1]*c

return(matrix)

def Radd(matrix,i,j,c):

matrix[j-1]=matrix[j-1] + c*matrix[i-1]

return(matrix)

# A simple version of rechelon that will find a right echelon form

def rechelon(matrix):

# check the number of rows

if matrix.shape[0]<=1:

return(matrix)

# get the rightmost column, nonzero positions

n = matrix.shape[1]

rcol = matrix[:,n-1]

nz = np.arange(rcol.size)[rcol != 0]

# when zero column, move to next column, if any

if nz.size==0:

if matrix.shape[1]<=1:

return(matrix)

rechelon(matrix[:,:n-1])

return(matrix)

# find first non-zero entry in column

p=nz[0]

if p!=0:

Rswitch(matrix,1,p+1)

# get zeros under the pivot
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for r in range(1,rcol.size):

Radd(matrix,1,r+1,-matrix[r,n-1]/matrix[0,n-1])

if matrix.shape[1]<=1:

return(matrix)

# if there is anything left to do after deleting first row/column, call recursively

rechelon(matrix[1:,:n-1])

return(matrix)

# Some tests that you can run

A = np.array([[1,1,1,3,-1],[1,2,4,7,3],[2,3,5,10,2]])

B = np.array([[1,3,1],[1,4,3],[2,3,5],[-1,10,2]]).astype(float)

# find a right echelon form of A

print(rechelon(A))

# find a right echelon form of B

print(rechelon(B))
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