Key Problems

Problem 1.

We consider a subset \mathcal{L} of the vectors $\mathbf{v}_1 = (1,3,4)$, $\mathbf{v}_2 = (-1,3,4)$, $\mathbf{v}_3 = (5,3,4)$, $\mathbf{v}_4 = (6,4,5)$, $\mathbf{v}_5 = (4,2,3)$. In each case, determine whether the vectors in \mathcal{L} are linearly independent, and compute the dimension and find a base of the vector space $V = \operatorname{span}(\mathcal{L})$:

a)
$$\mathcal{L} = \{ \mathbf{v}_1, \mathbf{v}_2 \}$$

b)
$$\mathcal{L} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$

c)
$$\mathcal{L} = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4 \}$$

d)
$$\mathcal{L} = \{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5 \}$$

e)
$$\mathcal{L} = \{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$$

f)
$$\mathcal{L} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$$

Problem 2.

Find a parametric description of the line through the points (1,3,2,5) and (-2,4,5,1) in \mathbb{R}^4 . Determine the intersection points (x,y,z,w) of this line and the hyperplane x+z+w=0.

Problem 3.

We consider the 3×5 matrix A given by

$$A = \begin{pmatrix} 1 & -1 & 5 & 6 & 4 \\ 2 & 4 & -2 & -2 & -2 \\ 3 & 5 & -1 & -1 & -1 \end{pmatrix}$$

Compute dim V and find a base \mathcal{B} of V in each case, and give a geometric characterization of V.

a)
$$V = \text{Null}(A)$$

b)
$$V = \operatorname{Col}(A)$$

c)
$$V = \text{Row}(A)$$

Problem 4.

Let A be a 8×8 matrix with rank $\mathrm{rk}(A) = 7$ and let **b** be a vector in \mathbb{R}^8 . Determine:

a) $\dim \text{Null}(A)$

b) $\dim \operatorname{Col}(A)$

c) $\dim \text{Row}(A)$

- d) The number of solutions of $A\mathbf{x} = \mathbf{0}$
- e) The number of solutions of $A\mathbf{x} = \mathbf{b}$
- f) The number of solutions of $A\mathbf{x} = \mathbf{0}$ that satisfies $x_1 + x_2 + \cdots + x_8 = 1$

Exercise problems

Problems from the textbook: [E] 2.1 - 2.2, 2.4, 2.5abc, 2.6 - 2.16

Exam problems:

[Midterm 10/2019] Question 1, 2, 8

Answers to Key Problems

Problem 1.

a) Yes, dim
$$V = 2$$
, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$

b) No, dim
$$V = 2$$
, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$

c) Yes, dim
$$V = 3$$
, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$

d) Yes, dim
$$V = 3$$
, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5\}$

e) Yes, dim
$$V = 3$$
, and $\mathcal{B} = \{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$

f) No, dim
$$V = 3$$
, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$

c) 7

Problem 2.

Parametric description: (x,y,z,w) = (1-3t,3+t,2+3t,5-4t). Intersection point: (x,y,z,w) = (-5,5,8,-3).

Problem 3.

- a) dim Null(A) = 2, $\mathcal{B} = \{\mathbf{w}_1, \mathbf{w}_2\}$ is a base for Null(A) with $\mathbf{w}_1 = (-3,2,1,0,0), \mathbf{w}_2 = (-6,4,0,1,1),$ and Null(A) is a plane in \mathbb{R}^5
- b) dim Col(A) = 3, $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a base of Col(A) when \mathbf{v}_i are the column vectors of A for i = 1, 2, 3, 4, 5, and Col(A) is all of the 3-dimensional space \mathbb{R}^3 .
- c) dim Row(A) = 3, the three row vectors of A is a base \mathcal{B} of Row(A), and Row(A) is a 3-dimensional linear subspace of \mathbb{R}^5 .

Problem 4.

- d) Infinitely many solutions (one degree of freedom)
- e) Infinitely many solutions (one degree of freedom) if \mathbf{b} is in $\operatorname{Col}(A)$, otherwise no solutions
- f) No solutions if $(1,1,\ldots,1)$ is in Row(A), otherwise one unique solution.