Key Problems

Problem 1.

Find all eigenvalues of A, and a base for the eigenspace E_{λ} for each eigenvalue λ :

a)
$$A = \begin{pmatrix} 5 & 9 \\ 9 & 5 \end{pmatrix}$$

b) $A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}$
c) $A = \begin{pmatrix} 3 & -4 \\ 3 & 0 \end{pmatrix}$
d) $A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{pmatrix}$
e) $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$
f) $A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Problem 2.

For the matrix A in Problem 1 a) - f), determine whether A is diagonalizable, and find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$ when this is possible.

Problem 3.

Find the eigenvalues of A, and show that A is diagonalizable:

$$A = \begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 2 & 3 & 0 \\ 0 & 3 & 2 & 0 \\ 4 & 0 & 0 & 1 \end{pmatrix}$$

Problem 4.

Use eigenvalues and eigenvectors of A to determine the limit of A^m when $m \to \infty$, if the limit exists. What can you say about the limit of $A^m \cdot \mathbf{v}_0$, the equilibrium state of the Markov chain with transition matrix A and initial state \mathbf{v}_0 ?

a)
$$A = \begin{pmatrix} 0.40 & 0.15\\ 0.60 & 0.85 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 0.77 & 0.46\\ 0.23 & 0.54 \end{pmatrix}$

Problem 5.

Show that when A is a 3×3 matrix, then the characteristic equation of A can be written as $-\lambda^3 + c_1\lambda^2 - c_2\lambda + c_3 = 0$, where $c_1 = \operatorname{tr}(A)$, $c_2 = M_{12,12} + M_{23,23} + M_{13,13}$ and $c_3 = \det(A)$. Hint: Write down the characteristic equation of a 3×3 matrix $A = (a_{ij})$ with general coefficients. Then use the formula to find the characteristic equation and the eigenvalues of the following matrices:

a)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 0 \\ 3 & 5 & 1 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ c) $A = \begin{pmatrix} 0 & 4 & 7 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix}$

Exercise Problems

Problems from the textbook:[E] 4.1 - 4.8Exam problems:[Midterm 10/2018] Question 1-6

Eivind Eriksen, Office B4-032, eivind.eriksen@bi.no https://www.dr-eriksen.no/teaching/GRA6035/ https://www.dr-eriksen.no/teaching/ELE3781/

BI Norwegian Business School MSc Business/Finance/Applied Economics BSc Business Analytics

Answers to Key Problems

Problem 1.

- a. Eigenvalues $\lambda_1 = -4$, $\lambda_2 = 14$ and eigenvectors $E_{-4} = \operatorname{span}(\mathbf{v}_1)$ and $E_{14} = \operatorname{span}(\mathbf{v}_2)$, where $\mathbf{v}_1 = (-1,1)$ and $\mathbf{v}_2 = (1,1)$.
- b. Eigenvalues $\lambda_1 = \lambda_2 = 3$ and eigenvectors $E_3 = \operatorname{span}(\mathbf{v}_1)$, where $\mathbf{v}_1 = (1,1)$.
- c. No eigenvalues or eigenvectors.
- d. Eigenvalues $\lambda_1 = \lambda_2 = 4$, $\lambda_3 = 2$ and eigenvectors $E_4 = \text{span}(\mathbf{v}_1, \mathbf{v}_2)$ and $E_2 = \text{span}(\mathbf{v}_3)$, where $\mathbf{v}_1 = (0, 1, 0)$, $\mathbf{v}_2 = (1, 0, 1)$, and $\mathbf{v}_3 = (-1, 0, 1)$.
- e. Eigenvalues $\lambda_1 = \lambda_2 = -1$, $\lambda_3 = 2$ and eigenvectors $E_{-1} = \text{span}(\mathbf{v}_1, \mathbf{v}_2)$ and $E_2 = \text{span}(\mathbf{v}_3)$, where $\mathbf{v}_1 = (-1, 1, 0)$, $\mathbf{v}_2 = (-1, 0, 1)$, and $\mathbf{v}_3 = (1, 1, 1)$.
- f. Eigenvalues $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and eigenvectors $E_0 = \operatorname{span}(\mathbf{v}_1)$, where $\mathbf{v}_1 = (1,0,0)$.

Problem 2.

a) Yes, with
$$P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} -4 & 0 \\ 0 & 14 \end{pmatrix}$ b) No
c) No
d) Yes, with $P = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

e) Yes, with
$$P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ f) No

Problem 3.

The eigenvalues of A are $\lambda_1 = \lambda_2 = 5$, $\lambda_3 = -1$ and $\lambda_4 = -3$.

Problem 4.

In all cases, $A^m \mathbf{v}_0 \to \mathbf{v}$ as $m \to \infty$ for the vector given below, and the limit of A^m is a matrix with the vector \mathbf{v} in each column.

a)
$$\mathbf{v} = \begin{pmatrix} 1/5\\ 4/5 \end{pmatrix}$$
 b) $\mathbf{v} = \begin{pmatrix} 2/3\\ 1/3 \end{pmatrix}$

Problem 5.

a) -λ³ + 6λ² - 4λ = 0, λ = 0 or λ = 3 ± √5
b) -λ³ + 9λ² - 18λ + 8 = 0, λ = 2 or λ = (7 ± √33)/2
c) -λ³ = 0, λ = 0 (multiplicity 3)