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Reading. In this lecture we cover topics from Section 15.4, 15.5, 15.7 and 16.1 in [1].

2.1. Vectors. A matrix with only one row is called a row vector and a matrix with only
one column is called a column vector. We refer to both types as vectors. These are typically
denoted by small bold letters and not capital letters. If a vector consists of n entries it is
called an n-vector.

We may represent 2-vectors in a coordinate system.

Problem 1. Draw the vectors a = (1, 4) and b = (4, 1) in a coordinate system. Draw also
a + b.

2.2. More on Matrix Multiplication. We will now see how to write a system of linear
equations a matrix equation.

Example 1. Show that the system

3x1 + 4x2 = 5
7x1 − 2x2 = 2

of linear equations can be written as
Ax = b

where

A =
(

3 4
7 −2

)
, x =

(
x1

x2

)
and b =

(
5
2

)
.

Solution. We compute

Ax =
(

3 4
7 −2

)(
x1

x2

)
=

(
3x1 + 4x2

7x1 − 2x2

)

and we see that Ax = b if and only if
(

3x1 + 4x2

7x1 − 2x2

)
=

(
5
2

)
. This is the same as saying

that 3x1 + 4x2 = 5 and 7x1 − 2x2 = 2.

The advantage of writing a system on matrix form is that this compact form may be
used even on very large systems of equations.
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Problem 2. Write the following system of equations as Ax = b:

x1 + 2x2 + x3 = 4
x1 + 3x2 + x3 = 5

2x1 + 5x2 + 3x3 = 1

Matrix notation can also be used to find the solution of a system of linear equations.

Problem 3. Let

A =




1 2 1
1 3 1
2 5 3


 and S =




4 −1 −1
−1 1 0
−1 −1 1


 .

Compute (SA)x and use this to solve the system of linear equations in the previous problem.

This suggests the following definition.

Definition 2. Let A be any matrix. A matrix S is called an inverse of A if

AS = SA = I.

For a 2× 2 matrix it is possible to give a formula for the inverse.

Problem 4. Let

A =
(

a b
c d

)

and assume that ad− bc 6= 0. Show that
1

ad− bc

(
d −b
−c a

)

is an inverse of A.

An important fact is that the inverse matrix is unique.

Proposition 3. Let A be an n× n matrix. If A has an inverse, then it is unique.

Proof. Assume that both X and Y are inverses of A. Then

Y = IY = (XA)Y = X(AY ) = XI = X.

¤
Since the inverse of a matrix A is unique (if it exists) it is denoted by A−1.

Problem 5. Find the inverse of

A =
(

3 4
7 −2

)

and use this to solve

3x1 + 4x2 = 5
7x1 − 2x2 = 2
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2.3. Determinants. We have already encountered determinants of 2× 2 matrices.

Definition 4. The determinant of a 2× 2 matrix

A =
(

a b
c d

)

is written

|A| =
∣∣∣∣

a b
c d

∣∣∣∣
and is defined by

|A| =
∣∣∣∣

a b
c d

∣∣∣∣ = ad− bc.

Consider the following example.

Example 5. Compute the determinants

(a)
∣∣∣∣

1 2
4 3

∣∣∣∣ (b)
∣∣∣∣

2 3
2 1

∣∣∣∣ (c)
∣∣∣∣

a + b a− b
a− b a + b

∣∣∣∣

Solution.

(a)
∣∣∣∣

1 2
4 3

∣∣∣∣ = 1 · 3− 4 · 2 = −5

(b)
∣∣∣∣

2 3
2 1

∣∣∣∣ = 2 · 1− 2 · 3 = −4

(c)
∣∣∣∣

a + b a− b
a− b a + b

∣∣∣∣ = (a + b)2 − (a− b)2 = 4ab

We shall later see how to compute the inverse of a 3×3 matrix by computing its so-called
cofactors.

Definition 6. Let A be an 3× 3 matrix. The cofactor Aij is (−1)i+j times the determinant
obtained by deleting row i and column j in A.

This definition will be generalized later.

Example 7. Let

A =




1 0 2
0 1 −1
2 0 1


 .

Compute the cofactor A12.

Solution.

A12 = (−1)1+2

∣∣∣∣
0 −1
2 1

∣∣∣∣ = (−1)(0 · 1− 2 · (−1)) = −2

Problem 6. Compute some more cofactors of the matrix

A =




1 0 2
0 1 −1
2 0 1



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The matrix 


A11 A12 A13

A21 A22 A23

A31 A32 A33




is called the cofactor matrix of A and denoted by cof(A). If A =




1 0 2
0 1 −1
2 0 1


 we

compute that

cof(A) =




1 −2 −2
0 −3 0
−2 1 1




Definition 8. The transpose of the cofactor matrix is called the adjoint matrix. In symbols

adj(A) = cof(A)T .

The adjoint matrix has useful properties.

Problem 7. Let

A =




1 0 2
0 1 −1
2 0 1


 .

Find adj(A) and compute A adj(A) and adj(A)A.
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2.4. Homework. You should solve the following problems before the next lecture.

Problem 8. Draw the vectors a = (−1, 3) and b = (4, 2) in a coordinate system. Draw also
a + b.

Problem 9. Compute the determinants

(a)
∣∣∣∣

2 3
4 −1

∣∣∣∣ (b)
∣∣∣∣

1 3
0 1

∣∣∣∣ (c)
∣∣∣∣

a− b a
a a + b

∣∣∣∣

Problem 10. Write

x1 + x2 = 1
x1 − 2x2 = 0

as
Ax = b.

Find A−1 and use this to solve the system of equations.

Problem 11. Write the following system of equations as Ax = b:

x1 + 4x2 + x3 = 0
x1 + 5x2 + x3 = 1

2x1 + 9x2 + 3x3 = 1

Find the adjoint matrix adj(A). Compute adj(A)A and use this to solve the system of linear
equation.
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