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1.3 VECTOR EQUATIONS

Key concepts to master: linear combinations of vectors and a
spanning set.

Vector: A matrix with only one column.

Vectors in R” (vectors with » entries):

Ui

Uz

Geometric Description of R?

Vector |: i :I is the point (x1,x2) in the plane.
X2

R? is the set of all points in the plane.



Parallelogram rule for addition of two vectors:

If u and v in R? are represented as points in the plane, then
u + Vv corresponds to the fourth vertex of the parallelogram

0

whose other vertices are 0, u and v. (Note that 0 = 0

EXAMPLE: Letu =[ ; }andv=[ ’i’ J Graphs of u,v

and u + v are given below:

X2
4 = (B4
o v 4
| (R ////‘
3 r I// > ji// / :
L/ AR
2w/ % S
/
1 / / /
l . / / (2\\) _

-/
ey

1 2 3 4

X1

lllustration of the Parallelogram Rule

weve () (7)< ()



EXAMPLE:

graph.

1
Letu = ,: 5 :, Express u, 2u, and —?23—u on a

X2

o

R

N

p
<l
N

N\

2 — %y




Linear Combinations
DEFINITION

Given vectors vy,V»,...,V, in R” and given scalars ci,ca, ... ,cp,
the vector y defined by

Y =ci1Vi+CaVa + -+ CpVp
is called a linear combination of v,,v»,...,v, using weights

C1,C25...,Cp-

Examples of linear combinations of viand v;:

3V + 2V, TV, V| —2V,, 0



2 -2
EXAMPLE: Letv, = [ | ] and v, = [ ) jl Express

each of the following as a linear combination of v, and v;:

o[ peel e Le el




EXAMPLE: Leta; = 0 |,az= 2 |,a3 = 6
14 10

and b = 8

Determine if b is a linear combination of a;, a,, and as.

Solution: Vector b is a linear combination of ai, a;, and a; if can
we find weights x;,x»,x3 such that

xX1ad1 +x2dr + x3a3 = b.

Vector Equation (fill-in):

| “ 3 )
Xiolo )t Xl 2 ) Ty e ) =g
) (Y Lo <
Corresponding System:
x1 + 4dx» + 3x3 = -1
ZXQ + GX3 = g
3x1 + 14x2 + 10)63 = -5



Corresponding Augmented Matrix:

14 301 [Doof1 ] = 1
02 6,8 [~| 0(Mo|=2 = x=-2
3 14 10 |=5 00T\2 ¥ = 2

)

-
R
\"0\["\'0_2\‘({-2"&2»&1::\0

Review of the last example: a,, a,, a; and b are columns of the
augmented matrix

1 o4 31
0 2 6\ 8
3 14 10 |-5
1 1 1

d; d; as b
Solution to
X118 +x2a8 +x3a; = b

is found by solving the linear system whose augmented matrix is

[al d> as b]



A vector equation

xia; +xa,+ - +x,a, =b

has the same solution set as the linear system whose
augmented matrix is

[al a, - a, b ]

In particular, b can be generated by a linear combination of
a;,as,,...,a, if and only if there is a solution to the linear
system corresponding to the augmented matrix.






1.4 The Matrix Equation Ax = b

Linear combinations can be viewed as a matrix-vector
multiplication.

Definition A=

combination of the €oJimns of A using the corresponding
entries in x as weights. l.e.,

X1
. X -
AX =|: al{az\m\an :'* _2 = Xpap+xzdaz+ - +x,a,
Xn
EXAMPLE:
1 4 1 [ 4T
7
3 [ ¢ :|=7 3 + -6 2 =
0 5 B 0
— - — _ _
7 24 31
21 +| -12 = 9
0 -30 - -30




EXAMPLE: Write down the system of equations corresponding
to the augmented matrix below and then express the system of
equations in vector form and finally in the form Ax = b where b

isa 3 x 1 vector.
2 3 419
:w —2
0 Y

A o
Solution: Corresponding system of equations (fill-in)

l%\%gkl+k{>\~_} e ﬁ
\,737‘\'& X 7_ ’\’—Z/

Vector Equation:

THEHTHEEN

2N “ | X1 9
3 1 o] {x\ - (”7/\




Three equivalent ways of viewing a linear system:
1. as a system of linear equations;

2. as a vector equation x;a; +x,a, + -+ +x,a, = b; or
3. as a matrix equation 4Ax = b.

THEOREM 3

If 4 is a m x n matrix, with columns ai,...,a,, and if b is in
R™, then the matrix equation

Ax =b
has the same solution set as the vector equation
xXid; +x2a +---+x,a, = b

which, in turn, has the same solution set as the system of
linear equations whose augmented matrix is

[al a, --- a, b ]

Useful Fact:
The equation 4x = b has a solution if and onlyifbisa

of the columns of 4.




1 4 5 b1
EXAMPLE: let4=| -3 -11 -14 |andb =| 5,

2 8 10 b3

Is the equation Ax = b consistent for all b?

Solution: Augmented matrix corresponding to Ax = b:

1 4 5 b 1 4 5 b
-3 —11 -14 b2 ~ 011 3b1 + bz
2 8 10 b3 0 00 —2[71 + b3
AXx = b is consistent for all b since some choices of b

make -2b7 + b3 nonzero.



1 4 5 |
A=| -3 11 -14

2 g8 10

Tt 1

d; a; as

The equation 4x = b is consistent if
—2b1 + b3 = (.
(equation of a plane in R?)

xi1a1 +xza3 +x3as = b ifand only if b5 — 25, = 0.

Columns of 4 span a plane
in R? through 0




Instead, if any b in R® (not just those lying on a particular line or
in a plane) can be expressed as a linear combination of the
columns of 4, then we say that the columns of 4 span R3.

Definition
We say that the columns of 4 = [ a; a, - a, ] span
R™ if every vector b in R” is a linear combination of
ai,...,dp

(i.e. Span{ai,...,a,} = R").

THEOREM 4
Let 4 be an m x n matrix. Then the following statements are
logically equivalent:

a. For each b in R”, the equation Ax = b has a solution.
b. Each b in R™ is a linear combination of the columns of 4.
c. The columns of 4 span R™.

d. 4 has a pivot position in every row.



Proof (outline): Statements (a), (b) and (c) are logically
equivalent.

To complete the proof, we need to show that (a) is true when (d)
is true and (a) is false when (d) is false.

Suppose (d) is . Then row-reduce the
augmented matrix[ A b ] .

[4 b]~- ~[U d]

and each row of U has a pivot position and so there is no pivot in
the last column of [U d |.

So (a) is

Now suppose (d) is . Then the last row of
[U d] contains all zeros.

Suppose d is a vector with a 1 as the last entry. Then [U d]
represents an inconsistent system.

Row operations are reversible:  [U d]~- ~[4 b]

= [4 b ]isinconsistent also. So (a) s -




12 ] |
EXAMPLE: Letd=| 3 4 |andb=| 5, | Isthe
5 6 b3

equation Ax=Db consistent for all possible_ b?

Solution: A4 has only columns and therefore has
at most pivots.

Since 4 does not have a pivot in every ,AX =b
is for all possible b,

according to Theorem 4.



EXAMPLE: Do the columnsof4=| 2 4 ¢ |spanR3?

Solution:
123
2 4 6 ~
0 39

(no pivot in row 2)

By Theorem 4, the columns of 4

Another method for computing 4x

Read Example 4 on page 44 through Example 5 on page 45
to learn this rule for computing the product Ax.

Theorem 5

If 4 is an m x n matrix, u and v are vectors in R”, and cis a
scalar, then:

a. A(u+v) = AU + Av;
b. A(cu) = cAu.



2.1 Matrix Operations
Matrix Notation:
Two ways to denote m x n matrix A:

In terms of the columns of A:

A=[ ai| a |-

a ]

In terms of the entries of 4:

— \\ » —
%\\ alj ais

A= ail sz \ din

Main diagonal entries: A, Qar | Ray, M=n
| @(vxcakc}v(ch_>
Zero matrix: ~ weoX e x
0 0 - 0
0= 0 - 0 0
0 0 - 0




THEOREM 1

Let 4, B, and C be matrices of the same size, and let r and s
be scalars. Then

a.A+B=B+4 d.r(4+B) =rd+rB
b.A+B)+C=4A+B+C) e.(r+s)A=rd+s4
c.A+0=4 f.r(sd) = (rs)A

Matrix Multiplication

Multiplying B and x transforms x into the vector Bx. In turn, if we
multiply 4 and Bx, we transform Bx into 4(BX). So A(Bx) is the
composition of two mappings.

Define the product 4B so that 4(Bx) = (4B)x.
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Suppose 4 is m x n and B is n x p where

B = b b

Then

- b, ]and x =

X1

X2

Xp

BX =X1b1 +x2b2 + .- +prp

and

A(BX)=A(X1b1 +x2b + -+ +prp)

= A(x1b1) + A(aby) + -+ + A(x,b))

= X1Ab1 +XQAb2 + - +prbp = [Abl Abz Abp]

Therefore,

A(BX) = [4b; 4b; - 4b, |x.

and by defining

AB = [A4b; 4b; -

Ab, |

we have A(Bx) = (4B)X.

X1

X2




-, ]
EXAMPLE: Compute ABwhere4d=| 3 -5 |and
0 1
5 |
B = : :
6 -7
Solution:
4 -2 ) 4 =2 |r 3 7]
Aby=| 3 -5 |: 1 Ab, =| 3 -5
6 —7
0 1 0 1 |- -
-, -,
=| =24 =1 26
6 ~7
-, T
= AB=| -24 26
6 -7

Note that Ab; is a linear combination of the columns of 4 and
Ab, is a linear combination of the columns of 4.

Each column of 4B is a linear combination of the columns of 4

using weights from the corresponding columns of B.




EXAMPLE: If 4is 4 x3 and B is 3 x 2, then what are the sizes of
AB and BA?

Solution:
* ok ok — -
*k ok
Xk ok ok
AB = * ok =
ko %k ok
* ok
* *x x| —
— ] X ko ok
b S
k ok ok
BA would be * Xk
%k %k
Xk %k
— — b S S 3
b —
which is

If4ismxnand Bis nxp, then 4B is m x p.




Row-Column Rule for Computing AB (alternate method)

The definition

AB = [4b; 4b, - A4b, |

is good for theoretical work.

When 4 and B have small sizes, the following method is more
efficient when working by hand.

If 4B is defined, let (4B),; denote the entry in the ith row and jth
column of 4B. Then

(AB)ij = anby +apby + - + Ainby;.

_ 1 ~
by
by
ajil dp - dip .
Dy
= (AB),.J.
| |




2 36

EXAMPLE A4 =
-1 0 1

AB, if it is defined.

],B

2 3
= 0 1
4 -7

. Compute

Solution: Since 4is 2 x 3 and B is 3 x 2, then 4B is defined and

AB is X

2 3 6

2 -3
2 3 6
0o 1 =
-1 0 1
4 -7
2 -3
2 3 6
0 1 =
-1 0 1
4 -7
-3
2 3 6
0o 1 =
-1 0 1
—7
28 —45
S0 AB = .
2 4




THEOREM 2

Let A be m x n and let B and C have sizes for which the
indicated sums and products are defined.

a. A(BC) = (4B)C (associative law of multiplication)
b.A(B+C) = AB+ AC (left - distributive law)
C. B+C)4A=BA+CA (right-distributive law)
d. »(4B) = (r4A)B = A(¥B)
for any scalar r

e. Ind=A4=A41, (identity for matrix multiplication)
- oo o .. o
T 5heig)
WARNINGS s es o A

Properties above are analogous to properties of real numbers.
But NOT ALL real number properties correspond to matrix
properties.

1. Itis not the case that 4B always equal BA. (see Example 7,
page 114)

2. Evenif AB = AC, then B may not equal C. (see Exercise 10
page 116) |

3. Itis possible for 4B = 0 evenif 4 + 0 and B + 0. (see
Exercise 12, page 116)

(59)-(23) = (2.2)

b



Powers of 4

EXAMPLE:

BIEE B B
Lo

(ARN = (AR (A.®) = ARAR % 8 RE
If 4 is m x n, the transpose of 4 is the n x m matrix, denoted by

A", whose columns are formed from the corresponding rows of
A.

EXAMPLE:
16 7 |
12345 | 276
A=| 6 78 9 8 =  AT=| 3 85
765 4 3 4 9 4
- B 5 8 3




1 20
EXAMPLE: LetA=[ 20 1 :I,Bz 0 1 . Compute

AB, (AB)T, ATBT and B747.

Solution:

1 3 73 10
o 1 0 -2
ATBT=| 2 0 =| 20 -4

21 4
grgr_| 10 -2
21 4

10



T + 1
THEOREM 3 A=f - n
Let 4 and B denote matrices whose sizes are appropriate for
the following sums and products.

a. (A1) = 4 (l.e., the transpose of 47 is 4)
b. A+B) =47+ BT
c. Forany scalarr, (r4)" = r4”

d. (4B)' = B74" (l.e. the transpose of a product of matrices
equals the product of their transposes in reverse order. )

EXAMPLE: Prove that (4BC)" =

Solution: By Theorem 3d,
(UBC)T = (UB)C)T = CT( )

=cT< ):

11






2.2 The Inverse of a Matrix

The inverse of a real number a is denoted by a~!. For example,
771 =1/7 and
7.7 1=71.7=1

An n x n matrix 4 is said to be invertible if thereisan n x n
matrix C satisfying

CA =A4AC =1,
where I, is the »n x n identity matrix. We call C the inverse of 4 .

FACT If 4is invertible, then the inverse is unique.

Proof: Assume B and C are both inverses of 4. Then

B = BI = B( ) = ( ) =1 =C.

So the inverse is unique since any two inverses coincide. g
The inverse of 4 is usually denoted by 471,

We have

AA™Y = 4714 =1,

Not all n x n matrices are invertible. A matrix which is not
invertible is sometimes called a singular matrix. An invertible
matrix is called nonsingular matrix.



Theorem 4

Let4 = [ . Z :I If ad — bc + 0, then 4 is invertible and
C

d -b
A_l - adibc I: ‘J
—C d

If ad — bc = 0, then 4 is not invertible.

Assume 4 is any invertible matrix and we wish to solve Ax = b.
Then

AX = b and so

IX = or X =
Suppose w is also a solution to Ax = b. Then 4w = b and

AW = b whichmeans w =4"'b.

So, w =4"'b, which is in fact the same solution.

We have proved the following result:

Theorem 5

If 4 is an invertible n x » matrix, then for each b in R”, the
equation 4x = b has the unique solution x = 47'b.



EXAMPLE: Use the inverse of 4 = \: —57 32 }to solve

-7X1 + 3x2 = 2
5x1 — 2xp = 1

Solution: Matrix form of the linear system:

REN




Theorem 6  Suppose 4 and B are invertible. Then the
following results hold:

a. A-'isinvertible and 4™1)" = 4 (i.e. 4 is the inverse of
A7), |

b. ABisinvertible and (4B)™! = B4

c. AT isinvertible and (47)™ = (4™)"

Partial proof of part b:

(AB)(B~'47) = A( A"

= A( )™ = .

Similarly, one can show that (B~1471)(4B) = 1.

Theorem 6, part b can be generalized to three or more invertible
matrices:

(ABC)™! =

Earlier, we saw a formula for finding the inverse of a 2 x 2
invertible matrix. How do we find the inverse of an invertible
n x n matrix? To answer this question, we first look at
elementary matrices.



A= (55 At 7
S : b ~2\ _ M [1 -t PR
s S \B S -2 75 —\\3/2\ ‘\/1\
P‘XD(J\\(Q}-—\,Q\,L:
M (A1) - ()
B P2\ | 2 X Lz
Atff = k (’Sq 'KSL\B‘ Ki\:(’sf\ (A
—~ - . \/\__\/\h—ﬁ
B —— P\w“\i(;g—w

N Px « Al'la (\@?\kil\: (;i\*\.(j(o\
Lz (38 = 7L
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Elementary Matrices

Definition

An elementary matrix is one that is obtained by performing
a single elementary row operation on an identity matrix.

EXAMPLE: Let £,

E; =

1
0
3

O = O
—_ O O

—

1 00
020
B 0 0 1

and 4 =

—

)

a b c
d e f
Lghi

oo =

E., E,, and E; are elementary matrices. Why?

—_—0 O

O - O




Observe the following products and describe how these
products can be obtained by elementary row operations on 4.

E4 =

ExA4A =

-

a

Q. &

a

b

d e
g h

c

i

a b
2d 2e
g h

d

cj

2f

I

b c—1
e f

B 3a+g 3b+h 3c+i

If an elementary row operation is performed on anm x n matrix
A, the resulting matrix can be written as EA, where the m x m
matrix E is created by performing the same row operations on

Ip.



Elementary matrices are invertible because row operations are
reversible. To determine the inverse of an elementary matrix E,
determine the elementary row operation needed to transform E
back into 7 and apply this operation to / to find the inverse.

For example,
100 | ]
E; = 010 E;l =
301
- — L —




-3 0 1

-3 0 1

0

1

0

Example: Let 4

0 2

Eq4

1

0
LOIO

0

E2(Eq14)

0

1

1

00

{1 00 |

L——301

0

0
1

0

1

0

1
0
3

E3(E2Eq1A4)

EsE E\A = 15 |.

So

Then multiplying on the right by 47!, we get

JEEDUEEEEAY

EsE>E 14

So

_ 41

3E2Eq13




The elementary row operations that row reduce A to |, are
the same elementary row operations that transform |, into
Al

Theorem 7

An n x n matrix 4 is invertible if and only if 4 is row equivalent
to I,,, and in this case, any sequence of elementary row
operations that reduces 4 to I, will also transform 7, to 47!.

Algorithm for finding A
Place 4 and I side-by-side {o form an augmented matrix [A 1 ]

Then perform row operations on this matrix (which will produce
identical operations on 4 and 7). So by Theorem 7:

[4 I] will row reduceto [ A7 ]

or 4 is not invertible.

2
EXAMPLE: Find the inverse of 4 = -3 0 1 |,ifitexists.
0O 1 0
Solution: _ B
2 00100 1 00 % 00
[41]=| 301010 |~~| 0100
0O 1 0 0 01 0 01 —3—-
—%— 00
SoAd!l = 0 01




Order of multiplication is important!

EXAMPLE  Suppose 4,B,C, and D are invertible n x n
matrices and 4 = B(D - 1,,)C.

Solve for D in terms of 4,B,C and D.

Solution:
A = B(D-1,)C

D -1, =B14C!

D—1,+ = B 1AC! +

D =

10
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