4th August 2010

Name and student number:

Problem 1. Compute
$$-2A + 5B$$
 when
 $A = \begin{pmatrix} 1 & 3 \\ -2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 3 \\ 2 & 1 \end{pmatrix}$

Problem 2. Compute
$$AB$$
 and BA , if possible, for the following:
(1) $A = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}$ and $B = \begin{pmatrix} -3 & 1 & 1 \end{pmatrix}$
(2) $A = \begin{pmatrix} 5 & -3 \\ 10 & 11 \end{pmatrix}$ and $B = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$
(3) $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 2 \\ 3 & 2 \\ -1 & 2 \end{pmatrix}$

Prob	lem	3.	Compute	the d	etermi	nants				
(a)	$\frac{1}{4}$	$\frac{2}{8}$	(b)	$2 \\ -2$	$-13 \\ 12$					

Problem 4. Write

 $5x_1 - 7x_2 = -2$ $7x_1 - 10x_2 = 1$

as $A\mathbf{x} = \mathbf{b}$. Find A^{-1} and use this to solve the system of equations.

Problem 5. Compute the determinant of A by cofactor expansion along a suitable row and determine if the matrix is invertible. (a) $A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ (b) $A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & -2 \\ -1 & 0 & 0 & 1 \end{pmatrix}$

Problem 6. Use Gauss elimination to solve the following linear system when r = 1: $x_1 + x_2 + x_3 = 6$ $x_1 - 2x_2 + 4x_3 = 3$ $x_1 - x_2 + rx_3 = 4$

Are there any values of r such that the system is inconsistent? Are there any values of r such that the system has infinitely many solutions?

Problem 7. Write the following system of linear equations as $A\mathbf{x} = \mathbf{b}$ and use Cramers rule to find x_2 :

 $2x_1 - x_2 + 2x_3 = 0$ $x_1 - 2x_2 - x_3 = 3$ $x_1 + x_2 - x_3 = 0$

Problem 8. Find the inverse of the matrix $A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$

if it exists.

Problem 9. Assume that
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & -1 & 0 \\ 10 & 0 & -1 \end{pmatrix}.$$

Compute A^2 . Is A invertible? If so, find the inverse of A without computing cofactors.