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0.1. Systems with infinitely many solutions. If there are more
unknowns than equations and there is a solution of the system, then
there are infinitely many solutions to the system. But we may also have
infinitely many solutions in other cases:

Example 0.1. Consider the system of equations4x1 −12x3 = 40
3x2 −6x3 = 15

2x1 +2x2 −10x3 = 30

We solve the system by performing Gauss-Jordan elimination on the
augmented matrix.4 0 −12 40

0 3 −6 15
2 2 −10 30

 Divide the first row with 4

∼

1 0 −3 10
0 3 −6 15
2 2 −10 30

 Subtract 2 times the first row from the third

∼

1 0 −3 10
0 3 −6 15
0 2 −4 10

 Divide the second row by 3

∼

1 0 −3 10
0 1 −2 5
0 2 −4 10

 Subtract 2 times the second row from the third

∼

1 0 −3 10
0 1 −2 5
0 0 0 0

 This matrix is on reduced echelon form

The associated system is x1 −3x2 = 10
x2 −2x3 = 5

0x1 +0x2 +0x3 = 0

The third equation is true for all values of the variables. The second
equation can be rewritten as x2 = 2x3 + 5 and first equation as x1 =
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3x3 + 10. In this way x3 is a free variable (can have any value), and
x1 and x2 are determined by these equations and the value of x3. We
write: 

x1 = 3x3 + 10

x2 = 2x3 + 5

x3 is a free variable

A pivot column is a column with a pivot. Note that in the example
the free variable is the third variable and this corresponds to the third
column in the reduced echelon form being not a pivot column. The
number of free variables in the solutions of a system is called the degree
of freedom in the solutions. In the example the degree of freedom is 1.

Example 0.2. See Gauss2.

1. Matrix arithmetic

Addition is easy. Two (m × n)-matrices are added by adding cor-
responding entries. The result is an (m × n) matrix. One can also
multiply a matrix with a number by multiplying all entries with the
number.

Exercise 1.1. Consider the two matrices

A =

[
4 −3 1
11 4 6

]
and B =

[
3 0 7
2 5 −1

]
.

Find 3A, −B, A− 2B, 2A + 3B.

Multiplication is harder.

Example 1.2. The second matrix is a column:

[
6 7 8 2
9 11 −4 3

]
·


2
3
9
−5

 =

[
6 · 2 + 7 · 3 + 8 · 9− 2 · 5
9 · 2 + 11 · 3− 4 · 9− 3 · 5

]
=

[
95
0

]

[
6 7 8 2
9 11 −4 3

]
·


3
−1
2
4

 =

[
6 · 3− 7 · 1 + 8 · 2 + 2 · 4
9 · 3− 11 · 1− 4 · 2 + 3 · 4

]
=

[
35
20

]

[
6 7 8 2
9 11 −4 3

]
·


10
4
0
3

 =

[
6 · 10 + 7 · 4 + 8 · 0 + 2 · 3
9 · 10 + 11 · 4− 4 · 0 + 3 · 3

]
=

[
94
143

]
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Example 1.3. The first matrix is a (2 × 4), the second matrix is a
(4× 3), the result is a (2× 3). Take each column in the second matrix
and multiply as in the previous example:

[
6 7 8 2
9 11 −4 3

]
·


2 3 10
3 −1 4
9 2 0
−5 4 3

 =

[
95 35 94
0 20 143

]

The same method is applied to all matrix multiplication. But the
two matrices have to fit together! The columns in the second matrix
have to be as high as the rows of the first matrix are wide. So if the
first matrix is a (m× n), the second has to be a (n× k). The result of
the multiplication is then a (m× k)-matrix.

Exercise 1.4. Consider the two matrices

A =

[
1 −3
2 4

]
and B =

[
5 2
−1 3

]
.

Find AB, BA, B2, A2, ABB.

Exercise 1.5. Consider the two matrices

A =
[
2 −5 1 3

]
and B =


6
−1
−2
3

 .

Find AB and BA.

1.1. Systems of linear equations as matrix multiplication. For
the lazy.

Example 1.6. We write the following system by matrix multiplication. 3x1 +x2 −2x3 +5x4 = 15
2x1 −x2 −11x3 +x4 = 14
−20x1 +3x2 +5x3 +7x4 = 9 3 1 −2 5

2 −1 −11 1
−20 3 5 7

 ·

x1

x2

x3

x4

 =

15
14
9


We can introduce symbols for the three matrices. Let A denote the
(3× 4)-matrix, let x denote the column of variables and b the matrix
to the right. Then the equation is

A · x = b

which is the same as the system of linear equations we started with. So
many linear equations become one matrix equation. The matrix A is
called the coefficient matrix of the system. Note that if we extend A
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by adjoining the column b to the right we get the augmented matrix of
the system.

2. Determinants

2.1. The wonderful determinant. To any square matrix A there is
a number, called the determinant of A, which is denoted det(A). It
has many wonderful properties:

(1) If det(A) 6= 0 then the matrix equation (system of linear equa-
tions)

A · x = b

has a unique solution for any column vector b.
(2) If A and B are two square matrices of the same size, then the

determinant of the product equals the product of the determi-
nants:

det(A ·B) = det(A) · det(B)

(3) If the square matrix B is obtained from the square matrix A by
multiplying a row in A by a number c then

det(B) = c · det(A)

(4) If the square matrix B is obtained from the square matrix A by
adding (or subtracting) a multiple of a row to another row, then

det(B) = det(A)

(5) If the square matrix B is obtained from the square matrix A by
interchanging two rows then

det(B) = − det(A)

2.2. Can we calculate it? Given a square matrix A, how do we find
the determinant det(A)? One method reduces the calculation to smaller
and smaller matrices. The determinant of the 1× 1-matrix [a] equals
the a itself. The second smallest is the (2× 2)-matrix:

Example 2.1. If A is 2 × 2 then the determinant is the product of
the two elements on the diagonal minus the product of the other two
elements:

If A =

[
a b
c d

]
then det(A) = ad− bc

Exercise 2.2. Find the determinant.

A =

[
3 4
−2 1

]
, B =

[
6 3
7 4

]
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Example 2.3. If A is 3× 3 then the determinant can be calculated by
the determinants of three (2× 2) matrices:

If A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 then

det(A) = a11 · det

[
a22 a23
a32 a33

]
− a12 · det

[
a21 a23
a31 a33

]
+ a13 · det

[
a21 a22
a31 a32

]
Can you see the pattern?

Exercise 2.4. Find the determinant.

A =

 0 3 0
17 71 2
0 19 1

 , B =

1 2 0
6 0 3
0 5 −4


Example 2.5. If A is (4× 4) then the determinant can be calculated
by the determinants of four (3× 3) matrices:

If A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 then

det(A) = a11 · det

a22 a23 a24
a32 a33 a34
a42 a43 a44

− a12 · det

a21 a23 a24
a31 a33 a34
a41 a43 a44


+ a13 · det

a21 a22 a24
a31 a32 a34
a41 a42 a44

− a14 · det

a21 a22 a23
a31 a32 a33
a41 a42 a43


Do you see the pattern now?

Exercise 2.6. Find the determinant.

A =


0 0 0 3
0 0 2 0
3 −1 0 0
−2 1 0 0

 , B =


6 5 0 0
8 7 0 0
0 0 9 2
0 0 3 1


Example 2.7. Sometimes it’s easy to find the determinant:

det

3 91 23
0 2 57
0 0 11

 = 3 ·2 ·11 det


5 91 23 38
0 3 57 9
0 0 17 64
0 0 0 10

 = 5 ·3 ·17 ·10

This pattern holds for all (quadratic, of course) matrices on echelon
form, because then there are only zeros below the main diagonal.

By using the properties of the determinant of matrices obtained by
elementary row operations we get another method for computing the
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determinant: Use Gauss elimination to obtain a matrix on echelon form
and keep track of how the operations change the determinant.

Example 2.8. Since 3 91 23
0 20 570
−6 −180 22

 ∼
 3 91 23

0 2 57
−6 −180 22

 ∼
3 91 23

0 2 57
0 2 68

 ∼
3 91 23

0 2 57
0 0 11


we get

det

 3 91 23
0 20 570
−6 −180 22

 = 10 · det

3 91 23
0 2 57
0 0 11

 = 10 · 3 · 2 · 11

Since the determinant is non-zero the linear system

3x1 +91x2 23x3 = a
20x2 +570x3 = b

−6x1 −180x2 +22x3 = c

has a solution no matter which numbers a, b and c we have (and there
is only one solution).

Exercise 2.9. See ExercisesDet.

2.3. Some matrices have an inverse. First a warning. If A and B
are square matrices of the same size we may multiply them in two ways:
Either A ·B or B ·A. These matrices are (usually) different!

Example 2.10.[
9 5
0 1

]
·
[
2 0
6 7

]
=

[
48 35
6 7

]
while

[
2 0
6 7

]
·
[
9 5
0 1

]
=

[
18 10
54 37

]
Definition 2.11. Let In denote the (n × n)-matrix which has 1s on
the diagonal and zeros elsewhere.

Example 2.12.

I2 =

[
1 0
0 1

]
, I3 =

1 0 0
0 1 0
0 0 1

 , I1 =
[
1
]

Definition 2.13. Let A be a given (n× n)-matrix. An inverse matrix
to A is an (n× n)-matrix B such that

A ·B = In and B ·A = In

Example 2.14. Since[
7 11
5 8

]
·
[

8 −11
−5 7

]
=

[
1 0
0 1

]
and

[
8 −11
−5 7

]
·
[
7 11
5 8

]
=

[
1 0
0 1

]
these two matrices are inverse to each other! (Do you see a pattern?)
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Fact 1: If A ·B = In then B ·A = In. So it’s enough to check one of
the equations.
Fact 2: There is at most one inverse to A (and there might be none!).
If A has an inverse it’s usually denoted A−1.

Exercise 2.15. Assume A is a (3 × 3)-matrix which has an inverse
A−1 and det(A) = 6. Find det(A−1).

2.4. The determinant determines whether there is an inverse.

Theorem 2.16. The following is true for all square matrices A.

(1) If det(A) 6= 0 then A has an inverse.
(2) If A has an inverse then det(A) 6= 0.

Exercise 2.17. If

A =

3 0 −1
0 3 6
7 2 5


Does A have an inverse? Does A2 have an inverse?

Exercise 2.18. Assume A is a (3× 3)-matrix with det(A) = 5. Put

B =

 2 0 0
59 3 1
476 2 0


Does B have an inverse? Find det(AB). Does AB have an inverse?

Exercise 2.19. Put

A =


1 0 0 0
0 4 9 2
0 3 −5 1
0 7 4 3

 and B =


0 0 0 1
−9 7 0 0
3 8 1 0
11 −5 0 0

 .

Does A have an inverse? Does B have an inverse? Does AB have an
inverse?

Exercise 2.20. Assume A and B are (3× 3)-matrices which both have
inverses. Will AB necessarily have an inverse? What about ABA?
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