LECTURE I

EIVIND EKIKSEN

7TH AUG 2013

FORK 1003
LINEAR ALGEBRA

SUMMAKY:

- LINEAR SYSTEMS (OF EQUATIONS)
- SOLUING LINEAR SYSTEMS BY GAUSSIAN ELIMATION
- MATRICES, MATRIX ALGEBRA, VECTORS

[ME] 6.1-6.2, 7.1-7.3

1 LINERR SYSTEMS

$$Exi$$
 $\begin{cases} x + y + z = 4 \\ x - y + 5z = 1 \\ 2x + y - z = 3 \end{cases}$ (3x3)

$$\begin{cases} x + y - z - w = 1 \\ x + z = 4 \end{cases}$$

In general:

$$\begin{array}{l} a_{11} \times_{1} + a_{12} \times_{2} + --- + a_{1n} \times_{n} = b_{1} \\ a_{21} \times_{1} + a_{22} \times_{2} + --- + a_{2n} \times_{n} = b_{2} \\ \vdots \\ a_{m_{1}} \times_{1} + a_{m_{2}} \times_{2} + --- + a_{m_{n}} \times_{n} = b_{m_{n}} \end{array}$$

2 Gaussian elimination

$$\frac{E_{xi}}{X_1 + X_2 = 3}$$
 (1)
 $\frac{1}{X_1 - X_2 = 1}$ (1)

Substitution:

ii)
$$X_1 - (3-x_1) = ($$
 (substitute for x_2)

$$2x_1-3=1$$

$$2x_1 = 4$$

 $x_1 = 2$ $x_2 = 3 - 2 = 1$

Elimination

$$(1) \quad x_1 + x_2 = 3$$

$$(1) \times_1 + \times_2 = 3$$

$$(2) \times_1 - \times_2 = 1$$

$$(1)+(2)$$
 $2\times_1 = 4$ (2) $\times_1 - \times_2 = 1$

Section 1.1: Systems of Linear Equations

A linear equation:

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

EXAMPLE:

$$4x_1 - 5x_2 + 2 = x_1$$
 and $x_2 = 2(\sqrt{6} - x_1) + x_3$
 \downarrow
rearranged
 \downarrow
 $3x_1 - 5x_2 = -2$
 $2x_1 + x_2 - x_3 = 2\sqrt{6}$

Not linear:

$$4x_1 - 6x_2 = x_1x_2$$
 and $x_2 = 2\sqrt{x_1} - 7$

A system of linear equations (or a linear system):

A collection of one or more linear equations involving the same set of variables, say, $x_1, x_2, ..., x_n$.

A solution of a linear system:

A list $(s_1, s_2, ..., s_n)$ of numbers that makes each equation in the system true when the values $s_1, s_2, ..., s_n$ are substituted for $x_1, x_2, ..., x_n$, respectively.

EXAMPLE Two equations in two variables:

one unique solution

no solution

infinitely many solutions

| Awa solutions | Mot linear equations | Infinitely many solutions | Infinitely many so

BASIC FACT: A system of linear equations has either

- (i) exactly one solution (consistent) or
- (ii) infinitely many solutions (consistent) or
- (iii) no solution (inconsistent).

EXAMPLE: Three equations in three variables. Each equation determines a plane in 3-space.

- i) The planes intersect in one point. *(one solution)*
- ii) The planes intersect in one line. (infinitely many solutions)

iii) There is not point in common to all three planes. (no solution)

The solution set:

The set of all possible solutions of a linear system.

Equivalent systems:

Two linear systems with the same solution set.

STRATEGY FOR SOLVING A SYSTEM:

 Replace one system with an equivalent system that is easier to solve.

EXAMPLE:

(1)
$$x_1 - 2x_2 = -1$$

(2) $-x_1 + 3x_2 = 3$
(3) (1) $x_1 - 2x_2 = -1$
(4) $(x_1 + 2x_2) = -1$
(5) $(x_1 + 2x_2) = 2$
(6) $(x_1 + 2x_2) = 2$
(7) $(x_1 + 2x_2) = 2$
(8) $(x_1 + 2x_2) = 2$
(9) $(x_1 + 2x_2) = 2$
(1) $(x_1 + 2x_2) = 3$
(2) $(x_1 + 2x_2) = 3$
(3) $(x_1 + 2x_2) = 3$
(4) $(x_1 + 2x_2) = 3$
(5) $(x_1 + 2x_2) = 3$
(6) $(x_1 + 2x_2) = 3$
(7) $(x_1 + 2x_2) = 3$
(8) $(x_1 + 2x_2) = 3$
(9) $(x_1 + 2x_2) = 3$
(10) $(x_1 + 2x_2) = 3$
(11) $(x_1 + 2x_2) = 3$
(12) $(x_1 + 2x_2) = 3$
(13) $(x_1 + 2x_2) = 3$
(14) $(x_1 + 2x_2) = 3$
(15) $(x_1 + 2x_2) = 3$
(17) $(x_1 + 2x_2) = 3$
(18) $(x_1 + 2x_2) = 3$
(19) $(x_1 + 2$

$$x_1 - 2x_2 = -1$$

 $-x_1 + 3x_2 = 3$

$$\begin{array}{rcl}
x_1 & - & 2x_2 & = & -1 \\
x_2 & = & 2
\end{array}$$

$$x_1 = 3$$
 $x_2 = 2$

Matrix Notation

$$\begin{array}{rcl}
 x_1 & - & 2x_2 & = & -1 \\
 -x_1 & + & 3x_2 & = & 3
 \end{array}
 \left[\begin{array}{ccc}
 1 & -2 \\
 -1 & 3
 \end{array}\right]$$

(coefficient matrix)

$$x_{1} - 2x_{2} = -1$$

$$-x_{1} + 3x_{2} = 3$$

$$\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{bmatrix}$$

(augmented matrix)

Facts: [- Produce equiv. lin. system - All lin. system can be solv Elementary Row Operations: using row operations.

1. (Replacement) Add one row to a multiple of another row.

2. (Interchange) Interchange two rows.

3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row equivalent matrices: Two matrices where one matrix can be transformed into the other matrix by a sequence of elementary row operations.

Fact about Row Equivalence: If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

$$x_1 + x_2 = 3$$
 $x_1 - x_2 = 1$
 $\lim_{n \to \infty} |x_n| = 3$
 $\lim_{n \to \infty} |x_n| = 3$

(b- | b s h- | c-) 8 8- z 0 0 1 z - 1 $8 = \{x\} - 2x2 - 1x\}$ $8 = \{x\} - 3x\} - 1x$ $-4x\} + (x) = 8$

EXAMPLE:

$$x_{1} - 2x_{2} + 3x_{3} = 0$$

$$2x_{2} - 8x_{3} = 8$$

$$-3x_{2} + 13x_{3} = -9$$

$$\begin{bmatrix} 1 -2 & 1 & 0 \\ 0 & 2 - 8 & 8 \\ 0 & -3 & 13 & -9 \end{bmatrix}$$

$$2x_2 + x_3 = 0$$

$$x_2 - 4x_3 = 4$$

$$x_3 = 3$$

Solution: (29, 16, 3)

Check: Is (29, 16, 3) a solution of the *original* system?

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$-4x_1 + 5x_2 + 9x_3 = -9$$

$$(29) - 2(16) + 3 = 29 - 32 + 3 = 0$$

 $2(16) - 8(3) = 32 - 24 = 8$
 $-4(29) + 5(16) + 9(3) = -116 + 80 + 27 = -9$

Gaussian elimination:

row operation + back substitution

bours-Jordan elimination; (variation) row operations + more row operations

Two Fundamental Questions (Existence and Uniqueness)

- 1) Is the system consistent; (i.e. does a solution exist?)
- 2) If a solution exists, is it **unique**? (i.e. is there one & only one solution?)

EXAMPLE: Is this system consistent?

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$-4x_1 + 5x_2 + 9x_3 = -9$$

In the last example, this system was reduced to the triangular form:

This is sufficient to see that the system is consistent and unique. Why?

EXAMPLE: Is this system consistent?

$$3x_{2} - 6x_{3} = 8$$

$$x_{1} - 2x_{2} + 3x_{3} = -1$$

$$5x_{1} - 7x_{2} + 9x_{3} = 0$$

$$\begin{bmatrix}
0 & 3 & -6 & 8 \\
1 & -2 & 3 & -1 \\
5 & -7 & 9 & 0
\end{bmatrix}$$

Solution: Row operations produce:

$$\begin{bmatrix} 0 & 3 & -6 & 8 \\ 1 & -2 & 3 & -1 \\ 5 & -7 & 9 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 0 & 3 & -6 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -6 & 8 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

Equation notation of triangular form:

$$x_1 - 2x_2 + 3x_3 = -1$$

 $3x_2 - 6x_3 = 8$
 $0x_3 = -3 \leftarrow Never true$

The original system is inconsistent!

EXAMPLE: For what values of h will the following system be consistent?

$$3x_1 - 9x_2 = 4$$
$$-2x_1 + 6x_2 = h$$

Solution: Reduce to triangular form.

$$\begin{bmatrix} 3 & -9 \\ -2 & 6 \end{bmatrix} 4 \\ \begin{bmatrix} 1 & -3 \\ h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix} \begin{pmatrix} \frac{4}{3} \\ h \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{4}{3} \\ h + \frac{8}{3} \end{bmatrix}$$

The second equation is $0x_1 + 0x_2 = h + \frac{8}{3}$. System is consistent only if $h + \frac{8}{3} = 0$ or $h = \frac{-8}{3}$.

Section 1.2: Row Reduction and Echelon Forms

Echelon form (or row echelon form):

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each <u>leading entry</u> (i.e. left most nonzero entry) of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zero.

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

EXAMPLE (continued):

Reduced echelon form:

$$\begin{bmatrix} 0 & 1 & * & 0 & 0 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 1 & 0 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 1 & 0 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * \end{bmatrix}$$
 reduced echelon form

Theorem 1 (Uniqueness of The Reduced Echelon Form):

Each matrix is row-equivalent to one and only one reduced echelon matrix.

Important Terms:

- pivot position: a position of a leading entry in an echelon form of the matrix.
- pivot: a nonzero number that either is used in a pivot position to create 0's or is changed into a leading 1, which in turn is used to create 0's.

 = leading thing in an entire feature.
- pivot column: a column that contains a pivot position.

(See the Glossary at the back of the textbook.)

$$-3[4] \bigcirc (0) | 1 | 2 \bigcirc (0) | 4 | -5)$$
echelon torm

EXAMPLE: Row reduce to echelon form and locate the pivot columns.

$$\begin{bmatrix} \mathbf{0} & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

Solution

pivot

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 & \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 0 & -3 & -6 & 4 & 9 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 1 & 4 & 5 & -9 & -4 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 5 & 16 - 15 & -15 \\ 0 & -3 & -6 & 4 & 9 \end{bmatrix}$$

pivot column

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 5 & 10 & -15 & -15 \\ 0 & -3 & -6 & 4 & 9 \end{bmatrix} \begin{bmatrix} 1 & 4 & 5 & -9 \\ 0 & 10 & 2 & -3 \\ 0 & 5 & 10 & -15 \\ 0 & -3 & -6 & 4 \end{bmatrix}$$

pivot position

Note: There is no more than one pivot in any row. There is no more than one pivot in any column.

Ex:
$$00234$$
 $x_1+2x_2+3x_3=4$ $x_2+2x_3=7$ $x_2+2x_3=7$ $x_1+0-x_1+0-x_2=3$ no Solutions

If the are solutions (consistut): one solution () every column (but the last) has a pivot (interilety many as not every column (but the Solutions (ast) has a pirot infinitely wary (T) 4 5 - 9 | -7 00 4 - 6 00 0 0 0 11 solutions (col. 3 tacks a pivot) X1 + 4xe +5x3 -9x4 =-7 2 ke +4xz -6xy =-6 -5xy = 0 X1, X2, X4: basic vo. ×3: free vol. $X_{1} = -4(-2x_{3}-3) \div 5x_{3}$ $X_{2} = -2x_{3}-3$ $X_{4} = 0$

EXAMPLE: Row reduce to echelon form and then to reduced echelon form:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

Cover the top row and look at the remaining two rows for the left-most nonzero column.

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix} \sim \begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

$$\sim \begin{bmatrix}
3 & -9 & 12 & -9 & 6 & 15 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 4
\end{bmatrix}$$
 (echelon form)

Final step to create the reduced echelon form:

Beginning with the rightmost leading entry, and working upwards to the left, create zeros above each leading entry and scale rows to transform each leading entry into 1.

SOLUTIONS OF LINEAR SYSTEMS

- basic variable: any variable that corresponds to a pivot column in the augmented matrix of a system.
- free variable: all nonbasic variables.

EXAMPLE:

$$x_1 +6x_2 +3x_4 = 0$$

$$x_3 -8x_4 = 5$$

$$x_5 = 7$$

pivot columns: $\frac{1}{3}$, $\frac{3}{5}$

basic variables:
$$\lambda_1, \lambda_3, \lambda_5$$

free variables:

Final Step in Solving a Consistent Linear System: After the augmented matrix is in **reduced** echelon form and the system is written down as a set of equations:

Solve each equation for the basic variable in terms of the free variables (if any) in the equation.

EXAMPLE:

$$\frac{x_1}{x_1} + 6x_2 + 3x_4 = 0$$

$$\frac{x_3}{x_2} - 8x_4 = 5$$

$$\frac{x_5}{x_3} = 7$$

$$\frac{x_1 = -6x_2 - 3x_4}{x_2 \text{ is free}}$$

$$x_3 = 5 + 8x_4$$

$$x_4 \text{ is free}$$

$$x_5 = 7$$
(general solution)

The **general solution** of the system provides a parametric description of the solution set. (The free variables act as parameters.) The above system has **infinitely many solutions**.

Why?

Warning: Use only the reduced echelon form to solve a system.

Existence and Uniqueness Questions

EXAMPLE:

$$\begin{bmatrix} 3x_2 & -6x_3 & +6x_4 & +4x_5 & = -5 \\ 3x_1 & -7x_2 & +8x_3 & -5x_4 & +8x_5 & = 9 \\ 3x_1 & -9x_2 & +12x_3 & -9x_4 & +6x_5 & = 15 \end{bmatrix}$$

In an earlier example, we obtained the echelon form:

$$\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$
 $(x_5 = 4)$

No equation of the form 0 = c, where $c \neq 0$, so the system is consistent.

Free variables: x_3 and x_4

Consistent system with free variables

 \Rightarrow infinitely many solutions.

EXAMPLE:

$$3x_{1} +4x_{2} = -3$$

$$2x_{1} +5x_{2} = 5 \rightarrow \begin{bmatrix} 3 & 4 & -3 \\ 2 & 5 & 5 \\ -2x_{1} & -3x_{2} = 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 3 & 4 & -3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{cases} 3x_1 + 4x_2 = -3 \\ x_2 = 3 \end{cases}$$

Consistent system, no free variables

 \Rightarrow unique solution.

Theorem 2 (Existence and Uniqueness Theorem)

1. A linear system is consistent if and only if the rightmost column of the augmented matrix is not a pivot column, i.e., if and only if an echelon form of the augmented matrix has no row of the form

 $\begin{bmatrix} 0 & \dots & 0 & b \end{bmatrix}$ (where b is nonzero).

- 2. If a linear system is consistent, then the solution contains either
- (i) a unique solution (when there are no free variables) or
- (ii) infinitely many solutions (when there is at least one free variable).

Using Row Reduction to Solve Linear Systems

- 1. Write the augmented matrix of the system.
- 2. Use the row reduction algorithm to obtain an equivalent augmented matrix in echelon form. Decide whether the system is consistent. If not, stop; otherwise go to the next step.
- 3. Continue row reduction to obtain the reduced echelon form.
- 4. Write the system of equations corresponding to the matrix obtained in step 3.
- 5. State the solution by expressing each basic variable in terms of the free variables and declare the free variables.

EXAMPLE:

a) What is the largest possible number of pivots a 4×6 matrix can have? Why?

4

b) What is the largest possible number of pivots a 6×4 matrix can have? Why?

4

c) How many solutions does a consistent linear system of 3 equations and 4 unknowns have? Why?

(at least one free var.)

d) Suppose the coefficient matrix corresponding to a linear system is 4×6 and has 3 pivot columns. How many pivot columns does the augmented matrix have if the linear system is inconsistent?

Problems:

Solve the linear systems using Gaussian elimination:

2. x + y + 2 = 4 x - y + 2z = 1x + 5y - z = 10

3. x+y+2+w=4 X-y+2-w=1 X+3y+2+3w=7