Telephone [+47] 464 10 000 Telefax [+47] 21 04 80 00 Call Center [+47] 810 00 500 www.bi.edu info@bi.no Org. no. 971 22 8865

LECTURE 2 Eivind Eriksen

AUG 7TH 14

Matrices and Vectors

Detinition:

An mon metrix is a rectangular array of numbers, with m rows and n columns.

Exi

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 4 & -9 \end{pmatrix}$$

a12 = 2 (row #1, col. #2 in the matrix A)

General metrix:

A vector (column vector, m-vector) is a mxl matrix; i.e. a natrix with one column.

Exi

$$\sqrt{=}\begin{pmatrix} 1\\ 4\\ -2 \end{pmatrix} = \sqrt{}$$

Computations with matrices (and vectors)

1) Addition / subtraction

You add/subtract metrices term by tem (entry by entry). It is possible whe the matrices have the some size.

2) Scalar multiplication. Scalar = number

Ex: 3.
$$(24) = (-34)$$
 | Scalar in at each position

A vector equation is an equation of the

H is always equivalent to a linear system.

 $\begin{array}{c} \times + 2y = 5 \\ 3x + y = 4 \end{array}$

More operations on matrices

$$\frac{\text{Ex:}}{34} \cdot \begin{pmatrix} 7 \\ 4 \end{pmatrix} = \begin{pmatrix} 15 \\ 37 \end{pmatrix}$$

$$2x2 \quad 2x1$$

In general:

$$\begin{pmatrix} 1 & + \\ -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 13 \\ -3 & 9 \end{pmatrix}$$

$$2x2 \qquad 2x2 \qquad \qquad 2x2$$

$$(\frac{3}{0},\frac{-1}{2})$$
 $(\frac{3}{0},\frac{-1}{2})$
 $(\frac{3}{0},\frac{-1}{2})$
 $(\frac{3}{0},\frac{-1}{2})$

$$\begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 7 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 17 \\ -2 & 8 \end{pmatrix}$$

$$\left(\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right) \cdot \left(\begin{array}{c} 0 \\ 1 \end{array}\right) = \left(\begin{array}{c} 3 \\ 4 \end{array}\right)$$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 · $\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = not defined.$

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = x \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} + y \cdot \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

$$\left(\frac{1 \cdot x + 3y}{2 \cdot x + 4y}\right) = x \cdot \left(\frac{1}{2}\right) + y \cdot \left(\frac{3}{4}\right)$$

Madrix equation:

$$\begin{array}{c|c} x_1 & a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \\ a_{m1} \end{array} + x_2 \cdot \begin{vmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{mn} \end{vmatrix} + x_2 \cdot \begin{vmatrix} a_{12} \\ b_{21} \\ \vdots \\ a_{mn} \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix}$$

anx + anx = b, anx + anx = b, anx + anx = b, i i amx + anx = b, i amx + anx = b, i amx = b,

A+0=A

A.I=A

I.A = A

Important facts about matrix multiplication

ii)
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

Special vatrices:

$$0 = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ \vdots & \vdots & \ddots & \ddots & 0 \end{pmatrix}$$

$$T_{n} = \begin{pmatrix} 1 & 0 & -- & 0 \\ 0 & 1 & 0 & -- & 0 \\ 0 & 0 & 1 & -- & 0 \end{pmatrix}$$
iduntity
number $0 & 0 & 0 & -- & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & 7 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 7 \\ 2 & 4 \end{pmatrix}$$

Kemenber:

Most algebraic rules that hold for numbers also hold for matrices.

But: AB +BA.

Square matrices

A square matrix (3 a matrix # col's)

$$E_{\times}: \begin{pmatrix} 23 \\ -17 \end{pmatrix} \begin{pmatrix} 147 \\ 021 \\ 300 \end{pmatrix}$$

Powers: When A is square, then

$$A^2 = A \cdot A$$

Diagonal metrices

$$D = \begin{pmatrix} d_{1} & 0 & 0 & -1 & 0 \\ 0 & d_{2} & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

square matrix where all entries dij = 0 for $i \neq j$.

 $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 0 & 7 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 14 \end{pmatrix}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 32 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Inverse matrices

For numbers $\stackrel{:}{\circ} 2 = \frac{1}{2}$

Detinition:

Let A be a square matrix.

An inverse of A is a matrix C

Such that

A.C = C.A = I.

Ex: A=(12) Does A have an inverse

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $A^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -5 & 1 \end{pmatrix}$

When A is 2×2 A = (2a),

then

$$|A^{-1}| = \frac{1}{ad-bc} \left(\frac{d-b}{-ca} \right) \quad \text{who } ad-bc \neq 0$$

$$|A^{-1}| \quad does \quad not \quad exist \quad \text{whe } ad-bc = 0$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = \frac{1}{-2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$$

A nxn-matrix

- i) the owerse A does not always exist
- ii) in those case where it does exist, the inverse is unique.

How to compute inverses?

- Here is a formula

- you can use Gaussian elimination

 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix}$

 $\left(\begin{array}{c|c} A & I \end{array}\right) = \left(\begin{array}{c|c} 0 & 1 & 1 & 0 & 0 \\ 12 & 4 & 0 & 0 & 0 \\ 13 & 9 & 0 & 0 & 1 \end{array}\right)^{-1} - 1$

(D() 100 003 -100 028 -100

003 - 10 2

In general: Reduce (AII) to an reduced echelon for-

Ex: A linear system that is nxn,

A . x = b

where A is an non-matrix. If A is invertible, then we can solve on this way 6

 $A \times = b \implies A^{-1} \cdot (A \times 1) = A^{-1} \cdot b$ $X = A^{-1} \cdot b$

$$x + 3y + 92 = 13$$
 $x + 3y + 92 = 13$

A 3+3

$$= \begin{vmatrix} 9 - 2 & | + 13 \\ -\frac{15}{2} + 28 - 39 & | = \\ 3 & -7 + \frac{13}{2} \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$$

1.3 VECTOR EQUATIONS

Key concepts to master: linear combinations of vectors and a spanning set.

Vector: A matrix with only one column.

Vectors in \mathbb{R}^n (vectors with n entries):

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

Geometric Description of R²

Vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the point (x_1, x_2) in the plane.

 \mathbb{R}^2)s the set of all points in the plane.

Parallelogram rule for addition of two vectors:

If **u** and **v** in **R**² are represented as points in the plane, then **u** + **v** corresponds to the fourth vertex of the parallelogram

whose other vertices are $\mathbf{0}$, \mathbf{u} and \mathbf{v} . (Note that $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.)

EXAMPLE: Let $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Graphs of \mathbf{u}, \mathbf{v} and $\mathbf{u} + \mathbf{v}$ are given below:

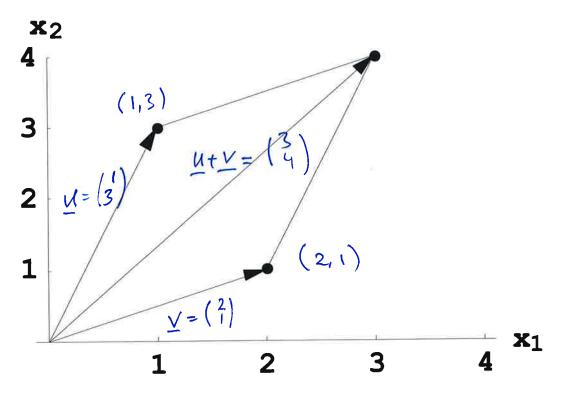
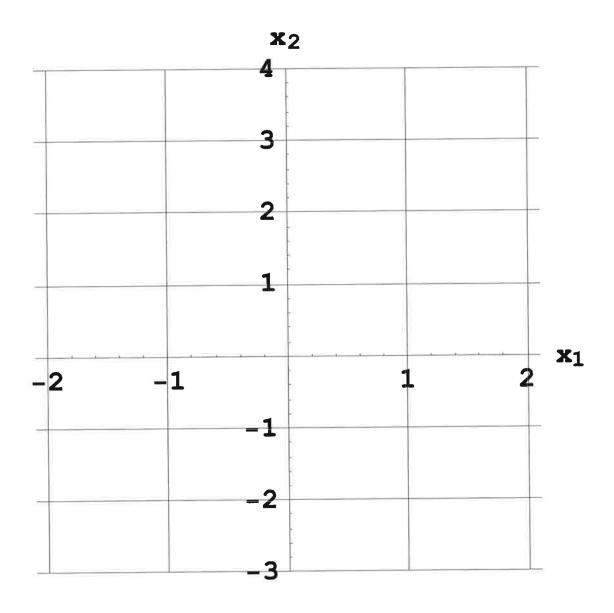


Illustration of the Parallelogram Rule

EXAMPLE: Let $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Express \mathbf{u} , $2\mathbf{u}$, and $\frac{-3}{2}\mathbf{u}$ on a graph.



Linear Combinations

DEFINITION

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbf{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

is called a **linear combination** of $v_1, v_2, ..., v_p$ using weights $c_1, c_2, ..., c_p$.

Examples of linear combinations of v_1 and v_2 :

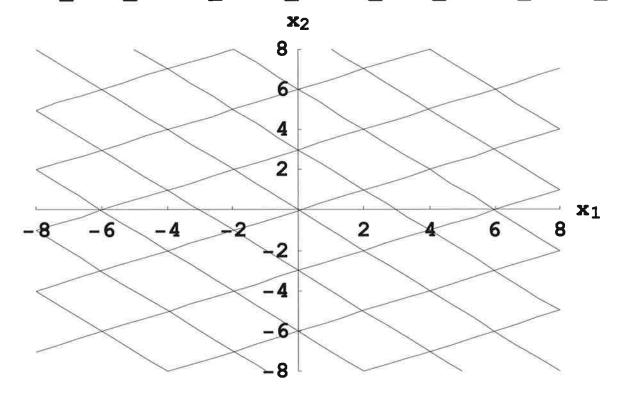
$$\frac{3\mathbf{v}_{1} + 2\mathbf{v}_{2}}{3\mathbf{v}_{1} + 2\mathbf{v}_{2}}, \quad \frac{1}{3}\mathbf{v}_{1}, \quad \mathbf{v}_{1} - 2\mathbf{v}_{2}, \quad \mathbf{0}$$

$$|S| = \frac{1}{3} \cdot \frac{1}{3}$$

EXAMPLE: Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Express

each of the following as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 :

$$\mathbf{a} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} 7 \\ -4 \end{bmatrix}$$



EXAMPLE: Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 4 \\ 2 \\ 14 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 3 \\ 6 \\ 10 \end{bmatrix}$,

and
$$\mathbf{b} = \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}$$
.

Determine if **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

Solution: Vector **b** is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 if can we find weights x_1, x_2, x_3 such that

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}.$$

Vector Equation (fill-in):

Corresponding System:

$$x_1 + 4x_2 + 3x_3 = -1$$

 $2x_2 + 6x_3 = 8$
 $3x_1 + 14x_2 + 10x_3 = -5$

Corresponding Augmented Matrix:

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \Rightarrow \begin{array}{c} x_1 = \underline{} \\ x_2 = \underline{} \\ x_3 = \underline{} \end{array}$$

Review of the last example: a_1 , a_2 , a_3 and b are columns of the augmented matrix

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3 \quad \mathbf{b}$$

Solution to

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$$

is found by solving the linear system whose augmented matrix is

$$\left[\begin{array}{ccccc} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{b} \end{array}\right].$$

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

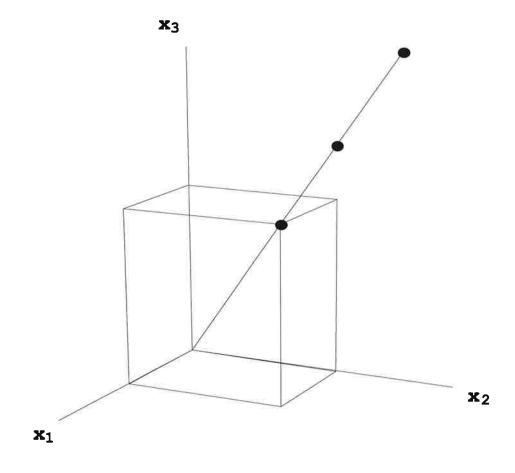
has the same solution set as the linear system whose augmented matrix is

In particular, **b** can be generated by a linear combination of $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ if and only if there is a solution to the linear system corresponding to the augmented matrix.

The Span of a Set of Vectors

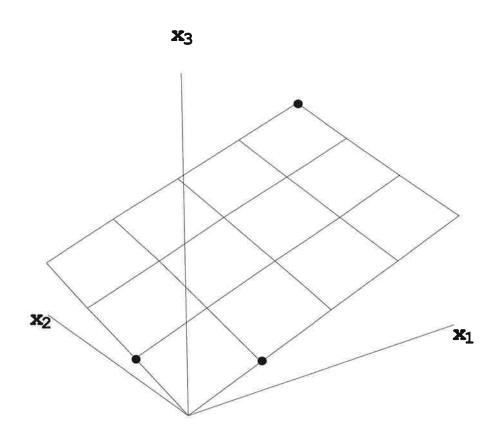
EXAMPLE: Let
$$\mathbf{v} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$
. Label the origin $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

together with v, 2v and 1.5v on the graph below.



 \mathbf{v} , $2\mathbf{v}$ and $1.5\mathbf{v}$ all lie on the same line. **Span** $\{\mathbf{v}\}$ is the set of all vectors of the form $c\mathbf{v}$. Here, **Span** $\{\mathbf{v}\}$ = a line through the origin.

EXAMPLE: Label u, v, u + v and 3u + 4v on the graph below.



u, **v**, **u** + **v** and **u** +4**v** all lie in the same plane. **Span**{**u**, **v**} is the set of all vectors of the form x_1 **u** + x_2 **v**. Here, **Span**{**u**, **v**} = a plane through the origin.

Definition

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are in \mathbf{R}^n ; then $\mathbf{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\} = \mathbf{set}$ of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$.

Stated another way: Span $\{v_1, v_2, ..., v_p\}$ is the collection of all vectors that can be written as

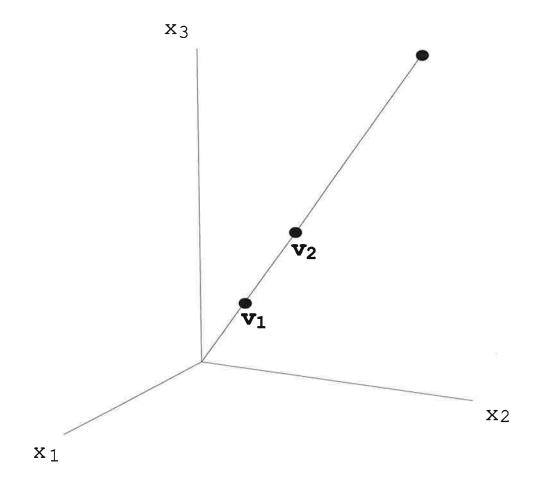
$$x_1\mathbf{V}_1 + x_2\mathbf{V}_2 + \cdots + x_p\mathbf{V}_p$$

where x_1, x_2, \dots, x_p are scalars.

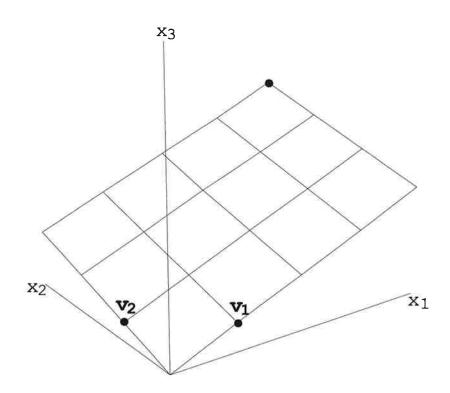
EXAMPLE: Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$.

- (a) Find a vector in **Span** $\{\mathbf{v}_1, \mathbf{v}_2\}$.
- (b) Describe **Span** $\{v_1, v_2\}$ geometrically.

Spanning Sets in R³



 \mathbf{v}_2 is a multiple of \mathbf{v}_1 $\mathbf{Span}\{\mathbf{v}_1,\mathbf{v}_2\} = \mathbf{Span}\{\mathbf{v}_1\} = \mathbf{Span}\{\mathbf{v}_2\}$ (line through the origin)



 \mathbf{v}_2 is **not** a multiple of \mathbf{v}_1 **Span** $\{\mathbf{v}_1,\mathbf{v}_2\}$ =plane through the origin

EXAMPLE: Let
$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix}$. Is

Span $\{\mathbf{v}_1,\mathbf{v}_2\}$ a line or a plane?

EXAMPLE: Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$. Is \mathbf{b} in

the plane spanned by the columns of A?

Solution:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 8 \\ 3 \\ 17 \end{bmatrix}$$

Do x_1 and x_2 exist so that

Corresponding augmented matrix:

$$\left[\begin{array}{ccccc}
1 & 2 & 8 \\
3 & 1 & 3 \\
0 & 5 & 17
\end{array}\right] \sim \left[\begin{array}{ccccc}
1 & 2 & 8 \\
0 & -5 & -21 \\
0 & 5 & 17
\end{array}\right] \sim \left[\begin{array}{ccccc}
1 & 2 & 8 \\
0 & -5 & -21 \\
0 & 0 & -4
\end{array}\right]$$

So **b** is not in the plane spanned by the columns of A

1.4 The Matrix Equation Ax = b

Linear combinations can be viewed as a matrix-vector multiplication.

Definition

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and if \mathbf{x} is in \mathbf{R}^n , then the product of A and \mathbf{x} , denoted by $A\mathbf{x}$, is the linear combination of the columns of \mathbf{A} using the corresponding entries in \mathbf{x} as weights. I.e.,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

EXAMPLE:

$$\begin{bmatrix} 1 & -4 \\ 3 & 2 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 7 \\ -6 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} + -6 \begin{bmatrix} -4 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 7 \\ 21 \\ 0 \end{bmatrix} + \begin{bmatrix} 24 \\ -12 \\ -30 \end{bmatrix} = \begin{bmatrix} 31 \\ 9 \\ -30 \end{bmatrix}$$

EXAMPLE: Write down the system of equations corresponding to the augmented matrix below and then express the system of equations in vector form and finally in the form $A\mathbf{x} = \mathbf{b}$ where \mathbf{b} is a 3×1 vector.

$$\left[\begin{array}{ccccc}
2 & 3 & 4 & 9 \\
-3 & 1 & 0 & -2
\end{array}\right]$$

Solution: Corresponding system of equations (fill-in)

Vector Equation:

$$\begin{bmatrix} 2 \\ -3 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \end{bmatrix}.$$

Matrix equation (fill-in):

Three equivalent ways of viewing a linear system:

- 1. as a system of linear equations;
- 2. as a vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$; or
- 3. as a matrix equation $A\mathbf{x} = \mathbf{b}$.

THEOREM 3

If A is a $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if \mathbf{b} is in \mathbf{R}^m , then the matrix equation

$$Ax = b$$

has the same solution set as the vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is

Useful Fact:

The equation $A\mathbf{x} = \mathbf{b}$ has a solution if and only if \mathbf{b} is a ______ of the columns of A.

EXAMPLE: Let
$$A = \begin{bmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.

Is the equation Ax = b consistent for all b?

Solution: Augmented matrix corresponding to Ax = b:

$$\begin{bmatrix} 1 & 4 & 5 & b_1 \\ -3 & -11 & -14 & b_2 \\ 2 & 8 & 10 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 5 & b_1 \\ 0 & 1 & 1 & 3b_1 + b_2 \\ 0 & 0 & 0 & -2b_1 + b_3 \end{bmatrix}$$

 $A\mathbf{x} = \mathbf{b}$ is ____ consistent for all \mathbf{b} since some choices of \mathbf{b} make $-2b_1 + b_3$ nonzero.

$$A = \begin{bmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{bmatrix}$$

$$\uparrow \quad \uparrow \quad \uparrow$$

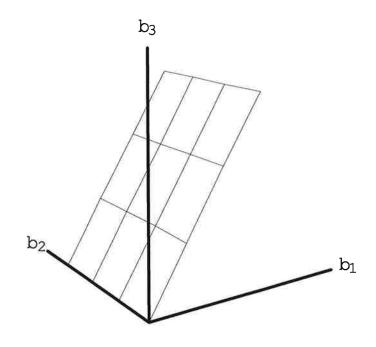
$$\mathbf{a}_{1} \quad \mathbf{a}_{2} \quad \mathbf{a}_{3}$$

The equation $A\mathbf{x} = \mathbf{b}$ is consistent if

$$-2b_1 + b_3 = 0.$$

(equation of a plane in \mathbb{R}^3)

 x_1 **a**₁ + x_2 **a**₃ + x_3 **a**₃ = **b** if and only if $b_3 - 2b_1 = 0$.



Columns of A span a plane in \mathbb{R}^3 through $\mathbf{0}$

Instead, if any **b** in \mathbb{R}^3 (not just those lying on a particular line or in a plane) can be expressed as a linear combination of the columns of A, then we say that the columns of A span \mathbb{R}^3 .

Definition

We say that **the columns of**
$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_p \end{bmatrix}$$
 span \mathbf{R}^m if **every** vector **b** in \mathbf{R}^m is a linear combination of $\mathbf{a}_1, \dots, \mathbf{a}_p$ (i.e. $\operatorname{Span}\{\mathbf{a}_1, \dots, \mathbf{a}_p\} = \mathbf{R}^m$).

THEOREM 4

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent:

- a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m .
- d. A has a pivot position in every row.

<u>Proof (outline)</u>: Statements (a), (b) and (c) are logically equivalent.

To complete the proof, we need to show that (a) is true when (d) is true and (a) is false when (d) is false.

Suppose (d) is _____. Then row-reduce the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$:

$$\begin{bmatrix} A & \mathbf{b} \end{bmatrix} \sim \cdots \sim \begin{bmatrix} U & \mathbf{d} \end{bmatrix}$$

and each row of U has a pivot position and so there is no pivot in the last column of $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$.

So (a) is _____.

Now suppose (d) is _____. Then the last row of $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ contains all zeros.

Suppose **d** is a vector with a 1 as the last entry. Then $\begin{bmatrix} U & \mathbf{d} \end{bmatrix}$ represents an inconsistent system.

Row operations are reversible: $\begin{bmatrix} U & \mathbf{d} \end{bmatrix} \sim \cdots \sim \begin{bmatrix} A & \mathbf{b} \end{bmatrix}$

 \Rightarrow [A **b**] is inconsistent also. So (a) is ______.

EXAMPLE: Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. Is the equation $A\mathbf{x} = \mathbf{b}$ consistent for all possible \mathbf{b} ? **Solution:** A has only _____ columns and therefore has at most _____ pivots.

Since A does not have a pivot in every _____, $A\mathbf{x} = \mathbf{b}$ is _____ for all possible \mathbf{b} , according to Theorem 4.

EXAMPLE: Do the columns of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 3 & 9 \end{bmatrix}$$
 span \mathbb{R}^3 ?

Solution:

$$\left[\begin{array}{cccc}
1 & 2 & 3 \\
2 & 4 & 6 \\
0 & 3 & 9
\end{array}\right] \sim$$

(no pivot in row 2)

By Theorem 4, the columns of A

Another method for computing Ax

Read Example 4 on page 44 through Example 5 on page 45 to learn this rule for computing the product Ax.

Theorem 5

If A is an $m \times n$ matrix, **u** and **v** are vectors in \mathbb{R}^n , and c is a scalar, then:

a.
$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$$
;

$$b. A(c\mathbf{u}) = cA\mathbf{u}.$$

2.1 Matrix Operations

Matrix Notation:

Two ways to denote $m \times n$ matrix A:

In terms of the *columns* of *A*:

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$

In terms of the *entries* of A:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

Main diagonal entries:_____

Zero matrix:

$$0 = \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}$$

THEOREM 1

Let A, B, and C be matrices of the same size, and let r and sbe scalars. Then

a.
$$A + B = B + A$$

$$d. r(A+B) = rA + rB$$

b.
$$(A + B) + C = A + (B + C)$$
 e. $(r + s)A = rA + sA$

e.
$$(r+s)A = rA + sA$$

$$c. A + 0 = A$$

$$f. r(sA) = (rs)A$$

Matrix Multiplication

Multiplying B and \mathbf{x} transforms \mathbf{x} into the vector $B\mathbf{x}$. In turn, if we multiply A and Bx, we transform Bx into A(Bx). So A(Bx) is the composition of two mappings.

Define the product AB so that $A(B\mathbf{x}) = (AB)\mathbf{x}$.

Suppose A is $m \times n$ and B is $n \times p$ where

$$B = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \vdots & x_p \end{bmatrix}$.

Then

$$B\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_p \mathbf{b}_p$$

and

$$A(B\mathbf{x}) = A(x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \cdots + x_p\mathbf{b}_p)$$

$$= A(x_1\mathbf{b}_1) + A(x_2\mathbf{b}_2) + \cdots + A(x_p\mathbf{b}_p)$$

$$= x_1 A \mathbf{b}_1 + x_2 A \mathbf{b}_2 + \dots + x_p A \mathbf{b}_p = \begin{bmatrix} A \mathbf{b}_1 & A \mathbf{b}_2 & \dots & A \mathbf{b}_p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

Therefore,

$$A(B\mathbf{x}) = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix} \mathbf{x}.$$

and by defining

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$$

we have $A(B\mathbf{x}) = (AB)\mathbf{x}$.

EXAMPLE: Compute
$$AB$$
 where $A = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix}$ and

$$B = \left[\begin{array}{cc} 2 & -3 \\ 6 & -7 \end{array} \right].$$

Solution:

$$A\mathbf{b}_{1} = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \qquad A\mathbf{b}_{2} = \begin{bmatrix} 4 & -2 \\ 3 & -5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -7 \end{bmatrix}$$
$$= \begin{bmatrix} -4 \\ -24 \\ 6 \end{bmatrix} \qquad = \begin{bmatrix} 2 \\ 26 \\ -7 \end{bmatrix}$$

$$\Rightarrow AB = \begin{bmatrix} -4 & 2 \\ -24 & 26 \\ 6 & -7 \end{bmatrix}$$

Note that $A\mathbf{b}_1$ is a linear combination of the columns of A and $A\mathbf{b}_2$ is a linear combination of the columns of A.

Each column of AB is a linear combination of the columns of A using weights from the corresponding columns of B.

EXAMPLE: If A is 4×3 and B is 3×2 , then what are the sizes of AB and BA?

Solution:

which is _____

If A is $m \times n$ and B is $n \times p$, then AB is $m \times p$.

Row-Column Rule for Computing AB (alternate method)

The definition

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$$

is good for theoretical work.

When A and B have small sizes, the following method is more efficient when working by hand.

If AB is defined, let $(AB)_{ij}$ denote the entry in the ith row and jth column of AB. Then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$

$$\begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix}$$

$$= \left[(AB)_{ij} \right]$$

EXAMPLE
$$A = \begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix}.$$
 Compute

AB, if it is defined.

Solution: Since A is 2×3 and B is 3×2 , then AB is defined and AB is ______.

$$AB = \begin{bmatrix} \mathbf{2} & \mathbf{3} & \mathbf{6} \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{2} & -3 \\ \mathbf{0} & 1 \\ \mathbf{4} & -7 \end{bmatrix} = \begin{bmatrix} \mathbf{28} & \blacksquare \\ \blacksquare & \blacksquare \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ \blacksquare & \blacksquare \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ 2 & \blacksquare \end{bmatrix}$$

$$\begin{bmatrix} 2 & 3 & 6 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 1 \\ 4 & -7 \end{bmatrix} = \begin{bmatrix} 28 & -45 \\ 2 & -4 \end{bmatrix}$$

So
$$AB = \begin{bmatrix} 28 & -45 \\ 2 & -4 \end{bmatrix}$$
.

THEOREM 2

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.

a.
$$A(BC) = (AB)C$$

(associative law of multiplication)

$$b. A(B+C) = AB + AC$$

(left - distributive law)

c.
$$(B + C)A = BA + CA$$
 (right-distributive law)

d.
$$r(AB) = (rA)B = A(rB)$$

for any scalar r

e.
$$I_m A = A = A I_n$$

(identity for matrix multiplication)

WARNINGS

Properties above are analogous to properties of real numbers. But NOT ALL real number properties correspond to matrix properties.

- 1. It is not the case that AB always equal BA. (see Example 7, page 114)
- 2. Even if AB = AC, then B may not equal C. (see Exercise 10, page 116)
- 3. It is possible for AB = 0 even if $A \neq 0$ and $B \neq 0$. (see Exercise 12, page 116)

Powers of A

$$A^k = \underbrace{A \cdots A}_{k}$$

EXAMPLE:

$$\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}^{3} = \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 21 & 8 \end{bmatrix}$$

If A is $m \times n$, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

EXAMPLE:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 8 \\ 7 & 6 & 5 & 4 & 3 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 1 & 6 & 7 \\ 2 & 7 & 6 \\ 3 & 8 & 5 \\ 4 & 9 & 4 \\ 5 & 8 & 3 \end{bmatrix}$$

EXAMPLE: Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}$. Compute

AB, $(AB)^T$, A^TB^T and B^TA^T .

Solution:

$$AB = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

$$(AB)^T = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix}$$

$$A^{T}B^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 10 \\ 2 & 0 & -4 \\ 2 & 1 & 4 \end{bmatrix}$$

$$B^{T}A^{T} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

THEOREM 3

Let A and B denote matrices whose sizes are appropriate for the following sums and products.

- a. $(A^T)^T = A$ (l.e., the transpose of A^T is A)
- b. $(A + B)^T = A^T + B^T$
- c. For any scalar r, $(rA)^T = rA^T$
- d. $(AB)^T = B^T A^T$ (I.e. the transpose of a product of matrices equals the product of their transposes in reverse order.)

EXAMPLE: Prove that $(ABC)^T = \underline{\hspace{1cm}}$.

Solution: By Theorem 3d,

$$(ABC)^{T} = ((AB)C)^{T} = C^{T} ()^{T}$$
$$= C^{T} () = \underline{ }.$$

2.2 The Inverse of a Matrix

The inverse of a real number a is denoted by a^{-1} . For example, $7^{-1} = 1/7$ and

$$7 \cdot 7^{-1} = 7^{-1} \cdot 7 = 1$$

An $n \times n$ matrix A is said to be **invertible** if there is an $n \times n$ matrix C satisfying

$$CA = AC = I_n$$

where I_n is the $n \times n$ identity matrix. We call C the **inverse** of A.

FACT If *A* is invertible, then the inverse is unique.

Proof: Assume B and C are both inverses of A. Then

$$B = BI = B(___) = (__)_ = I_ = C.$$

So the inverse is unique since any two inverses coincide.

The inverse of A is usually denoted by A^{-1} .

We have

$$AA^{-1} = A^{-1}A = I_n$$

Not all $n \times n$ **matrices are invertible.** A matrix which is **not** invertible is sometimes called a **singular** matrix. An invertible matrix is called **nonsingular** matrix.

Theorem 4

Let
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad-bc\neq 0$, then A is invertible and
$$A^{-1}=\frac{1}{ad-bc}\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad - bc = 0, then A is not invertible.

Assume A is any invertible matrix and we wish to solve $A\mathbf{x} = \mathbf{b}$. Then

$$\underline{\hspace{1cm}} Ax = \underline{\hspace{1cm}} b$$
 and so

$$Ix =$$
_____ or $x =$ ____.

Suppose w is also a solution to Ax = b. Then Aw = b and

$$Aw =$$
 b which means $w = A^{-1}b$.

So, $\mathbf{w} = A^{-1}\mathbf{b}$, which is in fact the same solution.

We have proved the following result:

Theorem 5

If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

EXAMPLE: Use the inverse of
$$A = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$$
 to solve

$$\begin{array}{rcl}
-7x_1 & + & 3x_2 & = & 2 \\
5x_1 & - & 2x_2 & = & 1
\end{array}.$$

Solution: Matrix form of the linear system:

$$\begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{14-15} \begin{bmatrix} -2 & -3 \\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}.$$

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} & & \\ & \end{bmatrix}$$

Theorem 6 Suppose A and B are invertible. Then the following results hold:

- a. A^{-1} is invertible and $(A^{-1})^{-1} = A$ (i.e. A is the inverse of A^{-1}).
- b. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$
- c. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$

Partial proof of part b:

$$(AB)(B^{-1}A^{-1}) = A(\underline{\hspace{1cm}})A^{-1}$$

$$= A(\underline{\hspace{1cm}})A^{-1} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$$

Similarly, one can show that $(B^{-1}A^{-1})(AB) = I$.

Theorem 6, part b can be generalized to three or more invertible matrices:

$$(ABC)^{-1} = \underline{\hspace{1cm}}$$

Earlier, we saw a formula for finding the inverse of a 2×2 invertible matrix. How do we find the inverse of an invertible $n \times n$ matrix? To answer this question, we first look at **elementary** matrices.

Elementary Matrices

Definition

An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

EXAMPLE: Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$,

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
 and $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.

 E_1 , E_2 , and E_3 are elementary matrices. Why?

Observe the following products and describe how these products can be obtained by elementary row operations on A.

$$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{bmatrix}$$

$$E_{3}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 3a + g & 3b + h & 3c + i \end{bmatrix}$$

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operations on I_m .

Elementary matrices are *invertible* because row operations are *reversible*. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

For example,

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \qquad E_3^{-1} = \begin{bmatrix} \\ \end{bmatrix}$$

Example: Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$$
. Then

$$E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$E_2(E_1A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$$

$$E_3(E_2E_1A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

So

$$\boxed{E_3E_2E_1A=I_3}.$$

Then multiplying on the right by A^{-1} , we get

$$E_3E_2E_1A_{\underline{}} = I_3_{\underline{}}.$$

So

$$E_3 E_2 E_1 I_3 = A^{-1}$$

The elementary row operations that row reduce A to I_n are the same elementary row operations that transform I_n into A^{-1} .

Theorem 7

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n will also transform I_n to A^{-1} .

Algorithm for finding A⁻¹

Place A and I side-by-side to form an augmented matrix A I. Then perform row operations on this matrix (which will produce identical operations on A and I). So by Theorem 7:

$$\begin{bmatrix} A & I \end{bmatrix}$$
 will row reduce to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$

or A is not invertible.

EXAMPLE: Find the inverse of
$$A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, if it exists.

Solution:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ -3 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{3}{2} & 1 & 0 \end{bmatrix}$$

$$\operatorname{So} A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}$$

So
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ \frac{3}{2} & 1 & 0 \end{bmatrix}$$

Order of multiplication is important!

EXAMPLE Suppose A,B,C, and D are invertible $n \times n$ matrices and $A = B(D - I_n)C$.

Solve for D in terms of A, B, C and D.

Solution:

$$A = B(D - I_n)C$$

$$D - I_n = B^{-1}AC^{-1}$$

$$D - I_n + B^{-1}AC^{-1} + B^{-1}AC^{-1} + B^{-1}AC^{-1}$$

$$D = \underline{\hspace{1cm}}$$