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X1

Xn

Both X and b are matrices, called column matrices. The n X 1 matrix x contains
i‘;"é‘riablcsa and the k X 1 matrix b contains the parameters from the right-hand side
of the system. Then, the system of equations can be written as

aj; o i X1 by
a,-j
Ay ' G by

or simply as Ax =h,

where Ax refers to the matrix product of the & X n matrix A with the n X 1 matrix
x. This product is a k X 1 matrix, which must be made equal to the & X 1 matrix b.

" Check that carrying out the matrix multiplication in Ax = b and applying the

definition of equality of matrices gives back exactly the original system of linear
equations. The matrix notation is much more compact than writing out arrays of
coefficients, and, as we shall see, it suggests how to find the solution to the system
by analogy with the one-variable case.

EXERCISES

31 (0 -1 {1 2

-1 2)’ B‘(4 -1 2)’ C—(s —1)’
{21 (1
D—(1 1), and E—(_l).

d@) Compute each of the following matrices if it is defined:
A+B, A
C+D, B
B+C, D

- AB, CE,  -D, (CEY,
' C4, EC, (cay,  E'CT.

A

D, 3B, DC, BY, ATCT,
C

b) Verify that (DA)T = ATD".
¢) Verify that CD # DC.
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=,
@ Check that

2314_f
0 -1 21 9
5 060 "

Note that the reverse product is not defined.
8.3 Show that if AB is defined, then B”A” is defined but ATB” need not be defineq.
8.4 If you choose four numbers at random for the entries of a 2 X 2 matrix A, g
others for another 2 X 2 matrix B, AB will probably not equal BA. Carry o
= Pprocedure a few times.
8.5 It sometimes happens that AB = BA.
a) Check this forA = % ;) and B = _3 —;4, .
b) Show that if B is a scalar multiple of the 2 X 2 identity matrix, then AB = BA fin
all 2 X 2 matrices A.

8.2 SPECIAL KINDS OF MATRICES

Special problems use special kinds of matrices. In this section we describe spms
of the important classes of k X n matrices which arise in economic analysis.

Square Matrix. = n, that is, equal number of rows and coiumns_]
Column Matrix. = 1, that is, one column. For example, '

(Z) wa (9),

4

Row Matrix, = 1, that is, one row. For example,
(2 1 0) and (2 3).

Diagonal Matrix. k = nand a; = 0fori # j that is, a square
matrix in which all nondiagonal entries are 0. For-
example,

2 0 1 00
(O b) and 0 2 0
0 0 3
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When A is nonsingular, U

Theorem 8.12 Any matrix A can be written as 2 product

where the F;’s are elementary matrices and U is in reduced row echelon fory

A=F + FoU

=JandA = F,+Fp.

!' QI;) Check that
| () -(-

1
1

21
11

I —. forA.

;I-, 21 4 5 2 o
i 9 (1 1)’ 2 (2 4)’ Z (—4 —2)'
]!
I 2 40 2 10
it ol 4 63, of 6 26}
-6 —10 0 -4 =3 9
I 2 6 0 5
1 6 21 8 17
| Nls 12 -4 13
, 0 -3 -12 2

@ Tnvert the coefficient matrix to solve the following systems of equations:

j! 2X1+)C2=5
\.I a
xi+x=3;

-1

8.16 Verify that matrix (4) is the inverse of matrix (3) by direct matrix multiplication;
8.17 Suppose that @ = 0 but ¢ # 0 in (5). Show that one obtains the same inverse (7

@ Show by simple matrix multiplication that, ifad — bc # 0,

i is both a left and a right inverse of A.
8.19 Use the technique of Example 8.3 to either invert each of the following matricesd

prove that it is singular:

EXERCISES

11 o0\! 50 -5
2) and 011 = S 0 5.
-1 10 -5 1 -5

-b
a

1
ad — bc

d

—C

(<)

2%+ x = 4
b) 6X1 + 2)62 + 6X3 =20
—4x; — 3xy + Ox; = 3;
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2x + 4x, = 2
¢) 4x)+ 6x+ 3x; = 1
—6x; — 10x, - 6.

. 821 Show that ifAisn X nand AB = BA, then B is also 1 X n.
elon form. | . (21 3 e i
B ( 8',22)1:0“4‘(1 | ) compute A%, A%, and A2,

823 Verify the statements about the inverses of elementary matrices in the last sentence
of Example 8.5.
824 a) Use Theorem 8.8 to prove that a 2 X 2 lower- or upper-triangular matrix is
invertible if and only if each diagonal entry is nonzero.
b) Show that the inverse of a 2 X 2 lower triangular matrix is lower triangular.
¢) Show that the inverse of a 2 X 2 upper triangular matrix is upper triangular.
a) Prove Theorem 8.10,
b) Generalize part c to the case of the product of & nonsingular matrices.

-5 2 ¢) Show by example that if A and B are invertible, A + B need not be invertible.
-5) d) Show that, when it exists, (A + B)™! is generally not A~! + B!,
=3 Prove Theorem 8.11.
] . a) Prove that (AB)* = A*B* if AB = BA.
tiplication. | b) Show that (AB)* # A*B* in general.
1e inverse (7) 8 ! ¢) Conclude that (A + B)* does not equal A2 + 2AB + B? unless AB = BA.

What is the inverse of the n X n diagonal matrix
d 0 0
0 4 0

D=1 | ;

0 0 0 -+ d,

1g matrices or . . e .
& Show that the inverse of a 2 X 2 symmetric matrix § is symmetric.

Show that the inverse of an n X n upper-triangular matrix U is upper-triangular, Can
you find an easy argument to extend this result to lower-triangular matrices?

[Hint: There are a number of ways to do the first part. You can use the inversion
method described in the proof of Theorem 8.7, keeping track of the status of the Os
below the diagonal. Or, you can show by direct calculation that B = [ implies that
B has only 0s below the diagonal.]

Show that for any permutation matrix P , P71 =pT,

Use Gauss-Jordan elimination to derive a criterion for the invertibility of 3 X 3
matrices similar to the ad — be criterion for the 2 X 2 case. For simplicity, assume
that no row interchanges are needed in the elimination process.

The definitions of left inverse and ri ght inverse apply to nonsquare matrices. Use the
ideas in the proof of Theorem 8.7 to prove the following statements for an m X n
matrix A, where m # n.

4) A nonsquare matrix cannot have both a left and a right inverse.

b) If A has one left (right) inverse, it has infinitely many.

¢) If m < n, A has a right inverse if and only if rank A = m,

d) Ifm > n, A has a left inverse if and only if rank A = n.
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-2x

Scalar multiplication in the plane.

There are distributive laws in Euclidean spaces as well. It is easy to seeiff
vector addition distributes over scalar multiplication and that scalar multiplicgfi
distributes over vector addition: R

(a) (r + s)u = ru + su for all scalars 7, s and vectors u.
(b) r(u + v) = ru + rv for all scalars r and vectors u, v.

Any set of objects with a vector addition and scalar multiplication whi§
satisfies the rules we have outlined in this section is called a vector spaced

elements of the set are called vectors. (The operations of vector addition and!
multiplication are the operations of matrix addition and scalar multiplicat
matrices, respectively, applied to 1 X n or n X 1 matrices, as defined in S;

1 of Chapter 8. The scalar product of the next section will also correspond I
matrix operation.)

EXERCISES

Letu = (1,2),v = (0,1), w = (1, —3),x = (1,2,0), and z = (0, 1, 1). ComlP
the following vectors, whenever they are defined: u + v, —4w, u + z, 3z, 2v, U &
u—-v,3x+z —2x,w+2x. -
10.6 Carry out all of the possible operations in Exercise 10.5 geometrically.
10.7 Show that —u = (—1)u.
10.8 Prove the distributive laws for vectors in R".

10.9 | Use Figure 10.12 to give a geometric proof of the associative law for vector addi@
ut+t(v+w)=um+v)+w
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7.17 a) General solution is x = 1 + (5/4)z, y = 12 — (9/4)z. To get an imeger
solution, take z = 4, then x = 6 and y = 3. b) Just change the right hand
side in the system in part a and apply the same analysis,

a= —8.

ayone, b)g=0,p=—1.

a)l,b)2,¢)3,e) 3.

a) Only the zero solution for i, iji and iv; infinitely many other solutiong
for the other two. b) Unique solution for every RHS for i and iv; infinite]y
many solutions for every RHS for ii; zero or infinitely many solutions de-
pending on the RHS for v; zero or one solution depending on the RHS
for iii.

Only c.

i):a)2,b)zand 1 of the other 3, ¢) z = 1/4, x = G/ +w— 2y.

C =0.05956- P, § = 0.04702- P, F = 0.35737 - P.

a) z and any two of the other 3 can be endogenous: b) if y is chosen as
exogenous and set to O, w = 0.6,x = 0.6,z = 0;¢) if z is the only
exogenous variable and set equal to 0, the corresponding system has in-
finitely many solutions.

7.30 No, the 3 X 4 coefficient matrix has rank 2; no submatrix can have
rank 3.

Chapter 8 Answers

_(2 40\, _(0 3 -3
8.1 a)A+B—(4 5 4),A Dundeﬁned,3B—(12 3 6).

5 3 0 4 2 6
DC=( 1),3 = 1 =1 ),ATcT=}1 10]).
-1 2 5 1

(4 3 (5 3
sto=(: )oc- (3 3)

{2 —5\_
8.5a)AB—(_5 2)—BA.

-1 2\/-1 2\ _(-1 2
ul (—1 2)(—1 2)‘(-1 2)'
3 6 36\ 3 6
-1 -2j\-1 =2 -1 =2/
8.9 number of ways of permuting n objects = n!.

0 01 1
closed under addition. b) yes, closed under multiplication.

8.10 a) ((1) 1) + (1 0) = (1 }) not a permutation matrix; so not

8.15 Carry out the multiplication.
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e e

8.18 Carry out the multiplication.

8.19 a) (_i _;) b) (_;ég ‘iﬁg), ¢) singular,
—s/2 0 I -6 3/2 -1
d)( 3/2 0 1/2),e)(13 -3 2),
/3 1/3 1/3 5/3 —1/3 1/3

) 9/2 —15/2 11/2
( 1/3 -7/3 10/3 —8/3

—1/4 3/4 -1 3/4
=1 1 -1 1

1 —1Y\(5 2
1 72)0)=0)
-6 3/2 -1 4 3
b) ( 13 -3 2) (20) = (——2),
5/2 -1/3 1/3 3 1
-5/2 0 -1 2 1
) ( 3/2 0 1/2) ( 1) = ( 0).
/3 1/3 1/3 -6 -1

821 A nX nand AB defined implies B has n rows.
A n X n and BA defined implies B has n columns.

(3 21) oo (1B 8 ano( 2 7
822 4 (21 A=l spA T -3 s/

0 1/dy ==+ 0
828 D' =1 . g ;
0 0 - 1/dy
a by ' _ 1 c —b . .
8.29 (b c) = (—b a)’ a symmetric matrix.
Ayl O 0
0 Ay 0
838 Al = :
0 0 v An
I . Al_l‘(I+A12C'1A21A1’11) —AI]‘AQC‘l
8-40 A _C_1A21A1_11 C__I N

where C = Ap — AnAT A

8.41 a) A, and Ap nonsingular.
b) Ay and Ay — a—'Z;Aleﬂ nonsingular.

¢) Ay, invertible and plA,'p nonzero.

842 a) En(), b En(=1) Eu@) Ep(—3)-
¢) Exy(1) - Ei3(3) " Ena(=2), ) Eas(—1) - Ez3(1) - E1a(—2) - E12(=3)-
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|
3 4 5 :
¢) One row echelon formis { 0 1 2 |, with det = —18 = — detA. |
0 0 -6 [
1 1 1 :
9.8 a) One row echelon formis { 0 3 1 |. So, det = 3. i
0 0 1 l
1 1 i
b) One row echelon form is | 0 4 5 ]. So, det = —20. l
0 0 -5 :
9.9 All nonsingular since det # 0. i
(1 -3 }
9.11 a) T (_1 4) -I
5 6/ |2 3 2 3 l
0 8 0 8 56
b 1 10 6 1 3] |1 3
detA 1 8 1 8 0 6
0 5| _|1 2 1 2
1 0 1 0 0 5
| ( 40 -16 —3)
= — - 6 5 —6].
M N5 2 s i
) | ( d —b) !
€ ad — bc \ —¢ al [
35 70
9.12x1—§—,xz— 3—5— 2
-7 14
9.13(1)}71:_—7:1,)C2=__7:_2.
-23 0 —-69
Da=—z=hin=g=06n= 37 :

9.14 g) detA = —1, detB = —1, detAB = +1; det(A + B) = —4.
b) detA = 24; detB = 18; detAB = 432; det(A + B) = 56.
¢) detA = ad — bc, detB = eh — fg, detAB = (ad — be)(eh — fg),
det(A + B) = detA + detB + ah — bg +de — cf.

. A bl Y

Chapter 10 Answers

104 02 —-1) b (=2-1) 0@ G0 o L24 fE2-23.
10.5 ) (1,3) b) (=4,12) ©) undefined d) (0,3,3) ¢) (0,2)

ALY A1) G710 (=2,-40) ) undefined
1010 9)5 B3 V3 DWZ V2 HV1E 92 W30 i3
1011 a)5 b)) 10 )4 d) /4l €6




