Computing the determinant of a 3×3 matrix.

Figure 9.1

Theorem 9.3 A square matrix is nonsingular if and only if its determinant is nonzero.

17

Э

Proof Sketch Recall that a square matrix A is nonsingular if and only if its row echelon form R has no all-zero rows. Since each row of the square matrix R has more leading zeros than the previous row, R has no all-zero rows if and only if the jth row of R has exactly (j-1) leading zeros. This occurs if and only if R has no zeros on its diagonal. Since $\det R$ is the product of its diagonal entries, R is nonsingular if and only if R is nonzero. Since $\det R = \pm \det A$, R is nonsingular if and only if R is nonzero.

Theorem 9.3 is obvious for 1×1 matrices, because the equation ax = b has a unique solution, x = b/a, for every b if and only if $a \ne 0$. Theorem 8.8 demonstrates Theorem 9.3 for 2×2 matrices.

EXERCISES

- Write out the complete expression for the determinant of a 3×3 matrix six terms, each a product of three entries.
- Write out the definition of the determinant of a 4×4 matrix in terms of the determinants of certain of its 3×3 submatrices. How many terms are there in the complete expansion of the determinant of a 4×4 matrix?
- **9.3** Compute out the expression on the right-hand side of (5). Show that it equals the expression calculated in Exercise 9.1.
- 9.4 Show that one obtains the same formula for the determinant of a 2×2 matrix, no matter which row or column one uses for the expansion.
- 9.5 Use a formula for the determinant to verify Theorem 9.1 for upper-triangular 3×3 matrices.
- 9.6 Verify the conclusion of Theorem 9.2 for 2×2 matrices by showing that the determinant of a general 2×2 matrix is not changed if one adds r times row 1 to row 2.
- 9.7 For each of the following matrices, compute the row echelon form and verify the conclusion of Theorem 9.2:

a)
$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$$
, b) $\begin{pmatrix} 2 & 4 & 0 \\ 4 & 6 & 3 \\ -6 & -10 & 0 \end{pmatrix}$, c) $\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \\ 0 & 7 & 8 \end{pmatrix}$.

9.8 Use the observation following Theorem 9.2 to carry out a quick calculation of the determinant of each of the following matrices:

a)
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 4 & 2 \\ 1 & 4 & 3 \end{pmatrix}$$
, b) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 5 \\ 1 & 9 & 6 \end{pmatrix}$.

9.9 Use Theorem 9.3 to determine which of the matrices in Exercises 9.7 and 9.8 are nonsingular.

9.2 USES OF THE DETERMINANT

Since the determinant tells whether or not A^{-1} exists and whether or not $A\mathbf{x} = \mathbf{b}$ has a unique solution, it is not surprising that one can use the determinant to derive a formula for A^{-1} and a formula for the solution \mathbf{x} of $A\mathbf{x} = \mathbf{b}$. First, we define the adjoint matrix of A as the transpose of the matrix of cofactors of A.

Definition For any $n \times n$ matrix A, let C_{ij} denote the (i, j)th cofactor of A, that is, $(-1)^{i+j}$ times the determinant of the submatrix obtained by deleting row i and column j from A. The $n \times n$ matrix whose (i, j)th entry is C_{ji} , the (j, i)th cofactor of A (note the switch in indices), is called the **adjoint** of A and is written adj A.

Theorem 9.4 Let A be a nonsingular matrix. Then,

(a)
$$A^{-1} = \frac{1}{\det A} \cdot \operatorname{adj} A$$
, and

(b) (Cramer's rule) the unique solution $\mathbf{x} = (x_1, \dots, x_n)$ of the $n \times n$ system $A\mathbf{x} = \mathbf{b}$ is

$$x_i = \frac{\det B_i}{\det A}, \quad \text{for } i = 1, \dots, n,$$

where B_i is the matrix A with the right-hand side **b** replacing the *i*th column of A.

For 3×3 systems,

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3.$$

Finally, we note three algebraic properties of the determinant function which we will find important in our use of determinants.

Theorem 9.5 Let A be a square matrix. Then,

- (a) $\det A^T = \det A$,
- (b) $det(A \cdot B) = (det A)(det B)$, and
- (c) $det(A + B) \neq det A + det B$, in general.

Gaussian elimination is a much more efficient method of solving a system of n equations in n unknowns than is Cramer's rule. Cramer's rule requires the evaluation of (n+1) determinants. Each determinant is a sum of n! terms and each term is a product of n entries. So, Cramer's rule requires (n+1)! operations. On the other hand, the number of arithmetic operations required by Gaussian elimination for such a system is on the order of n^3 . If n=6 as in the Leontief model in Section 8.5, then (n+1)! is 5040, while n^3 is only 216; the difference grows exponentially as n increases.

Nevertheless, Cramer's rule is particularly useful for small linear systems in which the coefficients a_{ij} are parameters and for which one wants to obtain a general formula for the endogenous variables (the x_i 's) in terms of the parameters and the exogenous variables (the b_j 's). One can then see more clearly how changes in the parameters affect the values of the endogenous variables.

EXERCISES

- 9.10 Verify directly that matrix (9) really is the inverse of matrix (8) in Example 9.3.
- 9.11 Use Theorem 9.4 to invert the following matrices:

a)
$$\begin{pmatrix} 4 & 3 \\ 1 & 1 \end{pmatrix}$$
, b) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 1 & 0 & 8 \end{pmatrix}$, c) $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

- **9.12** Use Cramer's rule to compute x_1 and x_2 in Example 9.4.
- 9.13 Use Cramer's rule to solve the following systems of equations:

a)
$$5x_1 + x_2 = 3$$

 $2x_1 - x_2 = 4$; $2x_1 - 3x_2 = 2$
b) $4x_1 - 6x_2 + x_3 = 7$
 $x_1 + 10x_2 = 1$.

9.14 Verify the conclusions of Theorem 9.5 for the following pairs of matrices:

a)
$$A = \begin{pmatrix} 4 & 5 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 \\ 1 & 1 \end{pmatrix}$;

9.3 IS-LM

As an illustrated in (

where Y =

7 =

a =

1 =

G =

 $M_s =$

All the paran eters instead

One can

Io, G, or M,

net product I

increase in e

vhich

tem

the

ach the

ion

ion

lly

in

а

rs es

b)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{pmatrix}$;
c) $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$.

0.3 IS-LM ANALYSIS VIA CRAMER'S RULE

As an illustrative example, consider the linear IS-LM national income model described in Chapter 6:

$$sY + ar = I^o + G$$

$$mY - hr = M_s - M^o$$
(10)

where Y = net national product

r = interest rate

s =marginal propensity to save,

a =marginal efficiency of capital,

 $I = \text{investment} \quad (= I^o - ar),$

m = money balances needed per dollar of transactions,

G = government spending,

 M_s = money supply.

All the parameters are positive. Because the coefficients in this system are parameters instead of numbers, it is easiest to solve (10) using Cramer's rule:

$$Y = \frac{\begin{vmatrix} I^o + G & a \\ M_s - M^o & -h \end{vmatrix}}{\begin{vmatrix} s & a \\ m & -h \end{vmatrix}} = \frac{(I^o + G)h + a(M_s - M^o)}{sh + am}$$

$$r = \frac{\begin{vmatrix} s & I^o + G \\ m & M_s - M^o \end{vmatrix}}{\begin{vmatrix} s & a \\ m & sh + am \end{vmatrix}} = \frac{(I^o + G)m - s(M_s - M^o)}{sh + am}.$$

One can now use these expressions to see that, in this model, an increase in I^o , G, or M_s or a decrease in M^o or m will lead to an increase in the equilibrium net product Y. An increase in I^o or M^o or a decrease in M_s , h, or m will lead to an increase in equilibrium interest rate r.

8.43 a)
$$\begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 0 & -1 \end{pmatrix}$$

b) $\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 6 \\ 0 & 0 & 3 \end{pmatrix}$,
c) $\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 & 0 & 1 \\ 0 & -2 & 3 & 1 \\ 0 & 0 & 3 & 8 \end{pmatrix}$
d) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 2 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 6 & 0 & 5 \\ 0 & 3 & 8 & 2 \\ 0 & 0 & -4 & 4 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.

8.48 a)
$$\begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
,
b) $\begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1/2 & 0 \\ 0 & 1 & -6 \\ 0 & 0 & 1 \end{pmatrix}$,

Chapter 9 Answers

9.1
$$a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{31}a_{23} + a_{13}a_{21}a_{32} - a_{13}a_{31}a_{22}$$

9.8

9.9

9.11

9.2
$$a_{11} \cdot \det \begin{pmatrix} a_{22} & a_{23} & a_{24} \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{pmatrix} - a_{12} \det \begin{pmatrix} a_{21} & a_{23} & a_{24} \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{pmatrix} + a_{13} \det \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{34} \\ a_{41} & a_{42} & a_{44} \end{pmatrix} - a_{14} \det \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix}$$

9.5
$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{pmatrix} = a_{11} \cdot \det \begin{pmatrix} a_{22} & a_{23} \\ 0 & a_{33} \end{pmatrix} - 0 \cdot \det \begin{pmatrix} a_{12} & a_{13} \\ 0 & a_{33} \end{pmatrix} + 0 \cdot \det \begin{pmatrix} a_{12} & a_{13} \\ 0 & a_{23} \end{pmatrix} = a_{11}a_{22}a_{33} + 0 + 0$$
, expanding along column one.

9.6
$$\det \begin{pmatrix} a_{11} & a_{12} \\ ra_{11} + a_{21} & ra_{12} + a_{22} \end{pmatrix} = a_{11}(ra_{12} + a_{22}) - a_{12}(ra_{11} + a_{21})$$

= $ra_{11}a_{12} - ra_{11}a_{12} + a_{11}a_{22} - a_{12}a_{21}$.

9.7 a)
$$\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$
, determinants = -1.
b) $\begin{pmatrix} 2 & 4 & 0 \\ 0 & -8 & 3 \\ 0 & 0 & 3/4 \end{pmatrix}$, determinants = -12.

- c) One row echelon form is $\begin{pmatrix} 3 & 4 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & -6 \end{pmatrix}$, with det $= -18 = -\det A$.
- **9.8** *a*) One row echelon form is $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. So, det = 3.
 - b) One row echelon form is $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 4 & 5 \\ 0 & 0 & -5 \end{pmatrix}$. So, det = -20.
- 9.9 All nonsingular since det $\neq 0$.
- **9.11** a) $\frac{1}{1}\begin{pmatrix} 1 & -3 \\ -1 & 4 \end{pmatrix}$

722.

n one.

21 *

$$b) \frac{1}{\det A} \cdot \begin{pmatrix} \begin{vmatrix} 5 & 6 \\ 0 & 8 \end{vmatrix} & -\begin{vmatrix} 2 & 3 \\ 0 & 8 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} \\ -\begin{vmatrix} 0 & 6 \\ 1 & 8 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 1 & 8 \end{vmatrix} & -\begin{vmatrix} 1 & 3 \\ 0 & 6 \end{vmatrix} \\ \begin{vmatrix} 0 & 5 \\ 1 & 0 \end{vmatrix} & -\begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 2 \\ 0 & 5 \end{vmatrix} \end{pmatrix}$$

$$= \frac{1}{37} \cdot \begin{pmatrix} 40 & -16 & -3 \\ 6 & 5 & -6 \\ -5 & 2 & 5 \end{pmatrix}.$$

c)
$$\frac{1}{ad-bc}\begin{pmatrix} -5 & 2 \\ -c & a \end{pmatrix}$$
.

9.12
$$x_1 = \frac{35}{35} = 1$$
, $x_2 = -\frac{70}{35} = -2$

9.13 a)
$$x_1 = \frac{-7}{-7} = 1$$
, $x_2 = \frac{14}{-7} = -2$.
b) $x_1 = \frac{-23}{-23} = 1$; $x_2 = \frac{0}{-23} = 0$; $x_3 = \frac{-69}{-23} = 3$.

- **9.14** a) $\det A = -1$, $\det B = -1$, $\det AB = +1$; $\det(A + B) = -4$.
 - b) $\det A = 24$; $\det B = 18$; $\det AB = 432$; $\det(A + B) = 56$.
 - c) $\det A = ad bc$, $\det B = eh fg$, $\det AB = (ad bc)(eh fg)$, $\det(A+B) = \det A + \det B + ah - bg + de - cf.$

Chapter 10 Answers

- **10.4** a) (2,-1) b) (-2,-1) c) (2,1) d) (3,0) e) (1,2,4) f) (2,-2,3).
- **10.5** a) (1,3) b) (-4,12) c) undefined d) (0,3,3) e) (0,2) f) (1,4) g) (1,1) h) (3,7,1) i) (-2,-4,0) j) undefined
- **10.10** a) 5 b) 3 c) $\sqrt{3}$ d) $3\sqrt{2}$ e) $\sqrt{2}$ f) $\sqrt{14}$ g) 2 h) $\sqrt{30}$ i) 3
- **10.11** a) 5 b) 10 c) 4 d) $\sqrt{41}$ e) 6