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FORK1003
Preparatory Course in Linear Algebra 2015/16

Lecture 1: Linear Systems

August 3, 2015

1 Introduction to Linear Systems

1.1 Linear Equation

Linear equations are of the form

x1 + 2x2 = 4 and 3x1 − 4x2 + x3 = −2.

Definition 1.1. A linear equation of n variables is an equation of the form

a1x1 + a2x2 + . . . + anxn = b,

where x1, x2, . . . , xn are the variables, and a1, a2, . . . , an, b are fixed constants.

We call them linear equations because their graphs are straight lines, or rather straight
planes in n dimensions.

Example 1.2.

Linear equations Not linear equations

3(x1 − x2) = −2 x1x2 + 3x3 = −1

−4x1 − 21/3x2 = 3 4x
1/2
1 + x2 = 2

x1 − x3 = 2x2 (x1 + x2)(x3 − x4) = 3
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FK1003 Lecture 1 1.2 Linear Systems

1.2 Linear Systems

Linear systems of equations is a collection of linear equations, such as{
3x1 + 2x2 = 0

−x1 + x2 = 5
(2× 2− system)

or 
3x1 + 2x2 = 2

x1 + x2 − 2x3 = 0

− x2 + 4x3 = −2.

(3× 3− system)

Definition 1.3 (Linear System). In general, an m × n-system is a system of m equations
in n variables written in the form

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm.

2 Solutions of Linear Systems

Substitution is the most basic and intuitive way of solving linear systems.

Example 2.1. We will solve the following linear system by substitution:{
2x1 + x2 = 3

x1 − x2 = 2.

We rearrange the second equation to get x2 in terms of x1:

x2 = x1 − 2.

Then we substitute this equation for x2 in the first equation to get:

2x1 + x2︸︷︷︸
=x1−2

= 3

2x1 + x1 − 2 = 3

3x1 = 5

x1 = 5/3.

So x1 = 5/3, and if we plug this into either of the equations above, we get

x2 = x1︸︷︷︸
=5/3

−2 = 5/3− 2 =
5− 6

3
= −1/3.

©Erlend Skaldehaug Riis 2015 2



FK1003 Lecture 1 2. SOLUTIONS OF LINEAR SYSTEMS

So the solution to this linear system is

(x1, x2) = (5/3,−1/3).

Furthermore, this solution is unique.

Definition 2.2 (Solution). A list of values (x1, x2, . . . , xn) is a solution to a linear system
of equations if each equation is true when the values are substituted in.

For a linear system, we are particularly interested in whether a solution exists for the
system, and if so, how many solutions exist? The following fact is important:

Proposition 2.3. A system of linear equation has either

(i) No solutions (inconsistent),

(ii) One unique solution (consistent), or

(iii) Infinitely many solutions (consistent).

Example 2.4 (Two equations in two variables). The following linear systems have no so-
lutions, one unique solution and infinite solutions respectively, as illustrated on the graphs
below.

{
3x− y = −1

3x− y = 2

{
2x− y = 4

x + y = 6

{
1
2
x + 2y = 4

x + 4y = 8

Figure 2.1: No solutions Figure 2.2: One solution
Figure 2.3: Infinite solu-
tions
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Example 2.5 (Three equations in three variables). Here are graphs of three 3 × 3-linear
systems. The graph of a linear equation in three variables is a 2D-plane in 3 dimensions. The
solutions correspond to the points on the diagram where all graphs intersect simultaneously.

Figure 2.4: One solution Figure 2.5: No solutions Figure 2.6: Infinite solu-
tions

Figure 2.7: Source: Eivind Eriksen’s FK1003 notes, 2014

3 Row Reduction

While the substitution method is sufficient for solving a linear systems with two variables,
once you have three or more variables, substitution can become tedious and messy. Using
row reduction and matrices then becomes the preferred strategy, because it lets you do the
calculations while keeping all the equations and variables organized.

3.1 Coefficient & Augmented Matrix

For a linear system, we have two matrices. The coefficient matrix has one row for each
equation, and one column for each variable, and it contains the coefficients of all the variables.
The augmented matrix is the same as the coefficient matrix, but has one extra column on
the right, which contains the constant terms on the right-hand side of each equation.

{
−x− 6y = 4

2x + 3y = 1

Linear system

[
−1 −6
2 3

]
Coefficient matrix

[
−1 −6 4
2 3 1

]
Augmented matrix

Definition 3.1 (m× n-matrix). A m× n-matrix is a matrix with m rows and n columns.

So a linear system with m equations in n variables gives you a m× n coefficient matrix
and a m× (n + 1) augmented matrix.
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3.2 Elementary Row Operations

Definition 3.2 (Elementary Row Operations). There are three elementary row operations
we can use to simplify the augmented matrix of a linear system:

1. (Scaling) Multiply all numbers in a row by a nonzero constant.

2. (Addition) Add a multiple of one row to another.

3. (Interchanging) Interchange two rows

Example 3.3. We will solve the linear system below by using row operations on its aug-
mented matrix. To the right of each augmented matrix is a description of the row oper-
ation used, and on the left is the corresponding linear equations for each augmented ma-
trix. Pay particular attention to what happens to the equations for each row operation.

{
x + y = 3

x− y = −1

[
1 1 3
1 −1 −1

]
{

2x = 2

x− y = −1

[
2 0 2
1 −1 −1

]
R1→ R1 + R2

(Add Row 2 to Row 1){
x = 1

x− y = −1

[
1 0 1
1 −1 −1

]
R1→ 1

2
R1

(Scale Row 1 by 1/2 ){
x = 1

− y = −2

[
1 0 1
0 −1 −2

]
R2→ R2−R1

(Add −(Row 1) to Row 2){
x = 1

y = 2

[
1 0 1
0 1 2

]
R2→ −R2

(Scale R2 by −1)
Through these row operations, we have arrived at a solution

x = 1, y = 2.

Definition 3.4 (Solution set). The solution set of a linear system is the set of all possible
solutions.

Definition 3.5 (Equivalent systems). Two linear systems are equivalent if they have the
same solution set.

Definition 3.6 (Row equivalent matrices). Two matrices are row equivalent if you can use
row operations to convert one matrix into the other.
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Very important fact:

Theorem 3.7. Linear systems are equivalent if and only if their augmented matrices are
row equivalent.

Put differently, row operations preserve solution sets.

Example 3.8. Lets solve a 3×3 linear system using row operations on augmented matrices.
Take the linear system 

x1 + 2x2 − x3 = 2

2x1 − x2 + 5x3 = 15

x1 + 3x3 = 10.

The idea is to use row operations on its augmented matrix, until its coefficient matrix is
reduced to the form 1 0 0

0 1 0
0 0 1

 .

We start with the augmented matrix below, and show the row operations to the right:

 1 2 −1 2
2 −1 5 15
1 0 3 10


 1 2 −1 2

0 −5 7 11
0 −2 4 8

 R2→ R2− 2R1

R3→ R3−R1 1 2 −1 2
0 −2 4 8
0 −5 7 11

 R2↔ R3

Interchange row 2 and row 3 1 2 −1 2
0 1 −2 −4
0 −5 7 11

 R2→ −1

2
R2

 1 0 3 10
0 1 −2 −4
0 0 −3 −9

 R1→ R1− 2R2

R3→ R3 + 5R2 1 0 3 10
0 1 −2 −4
0 0 1 3

 R3→ −1

3
R3
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 1 0 0 1
0 1 0 2
0 0 1 3

 R1→ R1− 3R3

R2→ R2 + 2R3

This augmented matrix represents the linear system

x1 = 1

x2 = 2

x3 = 3

which obviously has the unique solution

x1 = 1, x2 = 2, x3 = 3.

Since row equivalent matrices correspond to equivalent linear systems, this is also the solution
to the original linear system.
Check: If we plug (x1, x2, x3) = (1, 2, 3) into the original system, we get


x1 + 2x2 − x3 = 2

2x1 − x2 + 5x3 = 15

x1 + 3x3 = 10.

1 + 2 · 2− 3 = 1 + 4− 3 = 2

2 · 1− 2 + 5 · 3 = 2− 2 + 15 = 15

1 + 3 · 3 = 1 + 9 = 10.

3.3 Infinite or no Solutions

In the last section, when solving a linear system that had a unique solution, we were able to
row reduce its coefficient matrix to the form1 0 0

0 1 0
0 0 1

 .

The reason why is summarized in the following proposition:

Proposition 3.9. An n× n linear system has a unique solution if and only if its coefficient
matrix is row equivalent to the identity matrix

In =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .
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Now we will see what happens to linear systems with zero or infinitely many solutions:

Example 3.10. Consider the linear system
3x2 − 6x3 = 9

6x1 − 9x2 + 12x3 = −1

5x1 − 7x2 + 9x3 = 0.

We try to row reduce its augmented matrix to the identity matrix:

 0 3 −6 9
6 −9 12 −1
5 −7 9 0


 6 −9 12 −1

0 3 −6 9
5 −7 9 0

 R1↔ R2

 1 −2 3 −1
0 3 −6 9
5 −7 9 0

 R1→ R1−R3

 1 −2 3 −1
0 3 −6 9
0 3 −6 5

 R3→ R3− 5R1

 1 −2 3 −1
0 1 −2 3
0 3 −6 5

 R2→ 1

3
R2

 1 0 −1 5
0 1 −2 3
0 0 0 −4

 R1→ R1 + 2R2

R3→ R3− 3R2

This augmented matrix represents the linear system
x1 − x3 = 5

x2 − 2x3 = 3

0x1 + 0x2 + 0x3 = −4.

Notice that the bottom equation 0 = −4 is a contradiction with no solutions. Therefore the
original system has no solutions and is inconsistent.
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Example 3.11. We will now solve the linear system
3x2 − 6x3 = 9

6x1 − 9x2 + 12x3 = −1

5x1 − 7x2 + 9x3 = 4.

This is the same linear system as in the last example, except for that the last equation now
equals 4 instead of 0. We try to row reduce its augmented matrix to the identity matrix:

 0 3 −6 9
6 −9 12 −1
5 −7 9 4


 6 −9 12 −1

0 3 −6 9
5 −7 9 4

 R1↔ R2

 1 −2 3 −1
0 3 −6 9
5 −7 9 4

 R1→ R1−R3

 1 −2 3 −1
0 3 −6 9
0 3 −6 9

 R3→ R3− 5R1

 1 −2 3 −1
0 1 −2 3
0 3 −6 9

 R2→ 1

3
R2

 1 0 −1 5
0 1 −2 3
0 0 0 0

 R1→ R1 + 2R2

R3→ R3− 3R2

This augmented matrix represents the linear system
x1 − x3 = 5

x2 − 2x3 = 3

0x1 + 0x2 + 0x3 = 0.

Now the last equation says 0 = 0, which is always true. Therefore we only need to look at
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the first two equations to solve the system:{
x1 − x3 = 5

x2 − 2x3 = 3.

Suppose we have chosen a value for x1. Then the first equation gives us a value for x3:

x3 = x1 − 5.

Plugging this into the second equation gives us

x2 − 2(x1 − 5) = 3

x2 − 2x1 + 10 = 3

x2 = 2x1 − 7.

So for any value x1, we get the solution

(x1, x2, x3) = (x1, 2x1 − 7, x1 − 5)

The linear system therefore has infinite solutions, and so does the original system.

3.4 Echelon Forms

Now we have row-reduced linear systems that have one, zero and infinite solutions. What
we actually did was to reduce the augmented matrix to echelon form matrices.

Definition 3.12 (Echelon Form). A matrix is in echelon form if it satisfies the following
three conditions:

1. All nonzero rows are above any rows of all zeros.

2. For each nonzero row, let its leading entry be the leftmost nonzery entry. Then each
leading entry of a row is in a column to the right of the leading entry of the row above
it. That is, every leading entry is strictly to the right of leading entries above it.

3. All entries directly below a leading entry are zero.

Definition 3.13 (Reduced echelon form). A matrix is in reduced echelon form if it satisfies
the three conditions above, and in addition satisfies the following:

4. Every leading entry is 1.

5. All entries directly above a leading entry are zero.

Example 3.14. Here are three examples of matrices in echelon form. If you want them in re-
duced echelon form, you need to replace every asterisk ’*’ directly above a leading entry, 1, by
a 0. 

1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 0 1 ∗
0 0 0 0 0




0 1 ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗
0 0 0 0 1 ∗
0 0 0 0 0 0
0 0 0 0 0 0



1 0 0 2
0 1 0 −1
0 0 1 −2
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Example 3.15. Here are three more matrices, two of which are not echelon.

Echelon Not Echelon Not Echelon

Echelon and reduced echelon forms are useful to have, because every augmented matrix
can be reduced to echelon form, and from there, we can easily determine the solution set
of the original linear system. With a bit more terminology, we have a nice mathematical
framework for describing solutions of linear systems:

3.5 Pivot Positions & Basic Variables

Consider a linear system with its augmented matrix.

Definition 3.16 (Pivot position). A cell position in the matrix is a pivot position if it
contains a leading entry in an echelon form of the matrix.

Definition 3.17 (Pivot column). A pivot column is any matrix column that contains a pivot
position.

Theorem 3.18.

1. Every augmented matrix can be row reduced to an echelon form through elementary
row operations.

2. The echelon form of a matrix is not unique, but its pivot positions are unique.

3. The reduced echelon form is unique.

Recall that every column in the coefficient matrix corresponds to a variable: The first
column contains the coefficients of x1, the second column contains the coefficients of x2, and
so on...

Definition 3.19 (Basic variable). For a linear system, we say that a variable xi is a basic
variable if its corresponding column is a pivot column.

Definition 3.20 (Free variable). We say that a variable xi is a free variable if it is not a
basic variable.
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3.6 Classifying Linear Systems

We now have all the terminology we need to make some statements about the solutions of
linear systems in terms of their augmented matrices, pivot columns and echelon forms:

Proposition 3.21. A linear system has no solutions if and only if the rightmost column of
the augmented matrix is a pivot column.

Another way of stating this proposition is that a linear system has no solutions if and
only if the echelon form of the augmented matrix has a row with all zeros except for the
rightmost entry.

Example 3.22. Recall that for the linear system
3x2 − 6x3 = 9

6x1 − 9x2 + 12x3 = −1

5x1 − 7x2 + 9x3 = 0

we row reduced the augmented matrix until we got it in the form 1 0 −1 5
0 1 −2 3
0 0 0 −4

.


This is in echelon form (but not reduced echelon form). We concluded that this system has
no solutions, because the last row represents the equation

0 = −4

which is never true. But this is equivalent to saying that the rightmost column is a pivot
column.

Theorem 3.23. Suppose a linear system has at least one solution. Then it has exactly one
solution if and only if all its variables are basic. Equivalently, it has infinite solutions if and
only if one or more variables is free. Furthermore, the dimension of the solution set is equal
to the number of free variables, or ”degrees of freedom”.

To summarize: A linear system has

1. No solutions, if and only if the rightmost column of its augmented matrix
is a pivot column.

2. Otherwise, it has one unique solution if and only if all its variables are basic
variables.

3. Likewise, it has infinitely many solutions if and only if it has a free variable.

4. The dimension of the solution set is equal to the number of free variables.
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Example 3.24. Consider the 4× 4 linear system
− 6x2 − 3x3 + 4x4 = 9

−3x1 − x2 − 5x3 + 6x4 = 0

x1 + 5x2 + 4x3 − 9x4 = −7

−2x1 − 3x3 + 3x4 = −1.

This gives us the augmented matrix
0 −6 −3 4 9
−3 −1 −5 6 0
1 5 4 −9 −7
−2 0 −3 3 −1

 .

We can row reduce this to get the echelon form
1 5 4 −9 −7
0 2 1 −3 −3
0 0 0 1 0
0 0 0 0 0

 .

So the pivot positions are (1, 1), (2, 2) and (3, 4), which means the pivot columns are column
1, 2 and 4. Equivalently, the basic variables are x1, x2 and x4, while the free variable is x3.
So we can conclude that this linear system has infinitely many solutions.

Once we have reduced the augmented matrix to echelon form, we can also find the solution
set explicitly:

1. Firstly, the third row represents the equation

x4 = 0.

So every solution will have x4 = 0.

2. The first and second rows represent the linear equations{
x1 + 5x2 + 4x3 − 9x4 = −7

2x2 + x3 − 3x4 = −3.

Since x4 = 0, this simplifies to {
x1 + 5x2 + 4x3 = −7

2x2 + x3 = −3.

3. x3 is a free variable, so we will let it be ’free’; i.e. we will only write it in terms of x1

and x2.
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4. Suppose we have fixed a value for x2. Then we can rearrange the second equation to
get a value for x3:

x3 = −2x2 − 3.

Plugging this into the first equation for x3 gives us

x1 + 5x2 + 4 x3︸︷︷︸
=−2x2−3

= −7

x1 + 5x2 + 4(−2x2 − 3) = −7

x1 + 5x2 − 8x2 − 12 = −7

x1 = 3x2 + 5.

5. So for each value of x2, a solution (x1, x2, x3, 0) requires that

x1 = 3x2 + 5 and x3 = −2x2 − 3

6. Therefore, our solution set becomes

S =
{

(3x2 + 5, x2, −2x2 − 3, 0)
}
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