FK1003 Lecture 1 1. INTRODUCTION TO LINEAR SYSTEMS

FORK1003
Preparatory Course in Linear Algebra 2016/17
Lecture 1: Linear Systems

August 1, 2015

1 Introduction to Linear Systems
1.1 Linear Equation
Linear equations are of the form
r1+ 22, =4 and 3x1 —4xe + 3 = —2.
Definition 1.1. A linear equation of n variables is an equation of the form
a1 + asxs + ...+ apx, = b,
where x1,xs,...,x, are the variables, and aq, as,...,a,,b are fixed constants.

We call them linear equations because their graphs are straight lines, or rather straight
planes in n dimensions.

Example 1.2.

Linear equations | Not linear equations

3(1}1 — 1'2) = -2 T1x9 + 3.773 =-1
gy — 2y =3 4y 4wy =2
1 — T3 = 25(]2 (ZL‘l + l’g)(l‘g — ZE4) =3
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FK1003 Lecture 1 1.2 Linear Systems

1.2 Linear Systems

Linear systems of equations is a collection of linear equations, such as

31’1 -+ 2[172 =0
(2 X 2 — system)
-1+ To = 5
or
3[[’1 + 21’2 =2
1+ 19— 2x3=0 (3 x 3 — system)
— T2+ 433'3 = -2

Definition 1.3 (Linear System). In general, an m x n-system is a system of m equations
in n variables written in the form

a11T1 + ajpre + ...+ a1,T, = by

a91T1 + A22%o + ... + QonT, = b2

Am1T1 + QmaTa + ...+ Qi Trn = by

2 Solutions of Linear Systems

Substitution is the most basic and intuitive way of solving linear systems.

Example 2.1. We will solve the following linear system by substitution:

{2.’131 + X9 = 3

T1 — Tog = 2.
We rearrange the second equation to get x5 in terms of z:
To =T — 2.
Then we plug in this expression for x5 in the first equation:

21’14‘ T2 =3
~~~

=xr1—2
2$1 + 1z — 2=3
3ZE1 =5

So x1 = 5/3, and to solve for x5, we can plug x; = 5/3 into either of the equations above:

5—6
=5/3
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FK1003 Lecture 1 2. SOLUTIONS OF LINEAR SYSTEMS

So the solution to this linear system is
(z1,22) = (5/3,-1/3).
Furthermore, this solution is unique.

Definition 2.2 (Solution). A list of values (x1,xs,...,z,) is a solution to a linear system
of equations if each equation is true when the values are substituted in.

For a linear system, we are particularly interested in whether a solution exists for the
system, and if so, how many solutions exist. The following fact is important:

Proposition 2.3. A system of linear equation has either
(i) No solutions (inconsistent),

(i) One unique solution (consistent), or

(111) Infinitely many solutions (consistent).

Example 2.4 (Two equations in two variables). The following linear systems have no so-
lutions, one unique solution and infinite solutions respectively, as illustrated by the graphs

below.
3v—y=—1 20—y =4 %x+2y:4
3r—y =2 T+y= r+4y =8

1/2 x+2=’=4

x+4y=8

\
L L L L L L

t t t t t +

-8 -5 -4 -2 2 4 6 8

Figure 2.3: Infinite solu-
tions

Figure 2.1: No solutions Figure 2.2: One solution
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FK1003 Lecture 1 3. ROW REDUCTION

Example 2.5 (Three equations in three variables). Here are graphs of three 3 x 3-linear
systems. The graph of a linear equation in three variables is a 2D-plane in 3 dimensions. The
solutions correspond to the points on the diagram where all graphs intersect simultaneously.

Figure 2.5: No solutions Figure 2.6: Infinite solu-

Figure 2.4: One solution .
tions

Figure 2.7: Source: Fivind Eriksen’s FK1003 notes, 2014

3 Row Reduction

While the substitution method is sufficient for solving a linear systems with two variables,
once you have three or more variables, substitution can become tedious and messy. Using
row reduction and matrices then becomes the preferred strategy, because it lets you do the
calculations while keeping all the equations and variables organized.

3.1 Coefficient & Augmented Matrix

For a linear system, we have two matrices. The coefficient matriz has one row for each
equation, and one column for each variable, and it contains the coefficients of all the variables.
The augmented matriz is the same as the coefficient matrix, but has one extra column on
the right, which contains the constant terms on the right-hand side of each equation.

—x — 6y =4 -1 —6 -1 —614
2 +3y =1 2 3 2 3|1
Linear system Coefficient matrix Augmented matrix

Definition 3.1 (m X n-matrix). A m X n-matrix is a matrix with m rows and n columns.

So a linear system with m equations in n variables gives you a m X n coefficient matrix
and a m X (n + 1) augmented matrix.
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3.2 Elementary Row Operations

Definition 3.2 (Elementary Row Operations). There are three elementary row operations
we can use to simplify the augmented matrix of a linear system:

1. (Scaling) Multiply all numbers in a row by a nonzero constant.
2. (Addition) Add a multiple of one row to another.
3. (Interchanging) Interchange two rows.

Example 3.3. We will solve the linear system below by using row operations on its aug-
mented matrix. To the right of each augmented matrix is a description of the row op-
eration used, and on the left is the corresponding linear system for each augmented ma-
trix. Pay particular attention to what happens to the equations for each row operation.

r+y=3 (1 1] 3 |

r—y=—1 1 —1|-1

2w =2 (2 02 | R1— R1+ R2
r—y=-1 Rl (Add Row 2 to Row 1)

vl (1 0|1 ] Rl LRI

_ 1 —1|-1 2
r—y=-—1
L . (Scale Row 1 by 1/2)

v =1 (10 |1 ] R2 — R2— Rl
—y=-2 _0 -1 —2_ (Add —(Row 1) to Row 2)
x =1 1 01 R2 — —R2

y=2 0 1]2 (Scale R2 by —1)

Through these row operations, we have arrived at a solution

Definition 3.4 (Solution set). The solution set of a linear system is the set of all possible
solutions.

Definition 3.5 (Equivalent systems). Two linear systems are equivalent if they have the
same solution set.

Definition 3.6 (Row equivalent matrices). Two matrices are row equivalent if you can use
row operations to convert one matrix into the other.
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Very important fact:

Theorem 3.7. Linear systems are equivalent if and only if their augmented matrices are
row equivalent.
Put differently, row operations preserve solution sets.

Example 3.8. Lets solve a 3 x 3 linear system using row operations on augmented matrices.
Take the linear system
Ty + 209 — T3 =2
2r1 — X9+ 5x3 =15
1 + 3x3 = 10.

The idea is to use row operations on its augmented matrix, until its coefficient matrix is
reduced to the form

o = O
= O O

1
0
0

We start with the augmented matrix below, and show the row operations to the right:

(1 2 —1] 2 ]

2 -1 5 |15

1 0 310
(1 2 —1]2 ]

0 -5 7 |11 R2 - R2 — 2R1
(0 -2 4 ]38 | R3 — R3— R1
(1 2 1] 2 ]

0 -2 4|38 R2 < R3
I 0 =5 7 |11 | Interchange row 2 and row 3

1 2 —1] 2 X
0 1 -2|—4 R2 = —R2
0 -5 7 |11 2
(10 310

1 -2 -4 R1 — R1—2R2
|00 =3[0 R3 — R3 + 5R2

(10 3|10 )

01 —2|-4 R3 — ——R3

00 113 3
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FK1003 Lecture 1 3.3 Infinite or no Solutions

R1 — R1 —3R3

0
0
1 R2 — R2 + 2R3

1
0
0

O = O
W N =

This augmented matrix represents the linear system

T = 1
To = 2
T3 = 3
which obviously has the unique solution
1 =1, Ty = 2, T3 = 3.

Since row equivalent matrices correspond to equivalent linear systems, this is also the solution
to the original linear system.
Check: If we plug (21, x2,23) = (1,2, 3) into the original system, we get

Ty + 219 — 13 =2 1+42-2—-3 =144-3 =2
2cr1 — X9+ dx3 =15 2:1-2+5-3=2-2+15=15
T + 3z3 = 10. 1+3-3 =1+9 = 10.

3.3 Infinite or no Solutions

In the last section, when solving a linear system that had a unique solution, we were able to
row reduce its coefficient matrix to the form

o O =
o = O
_ o O

The reason why is summarized in the following proposition:

Proposition 3.9. An n x n linear system has a unique solution if and only if its coefficient
matriz 18 row equivalent to the identity matrix

100 0
010 -0
=001 -0
000 1]
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3.3 Infinite or no Solutions

Now we will see what happens to linear systems with zero or infinitely many solutions:

Example 3.10. Consider the linear system

3.232 — 6.173 =9
61’1 — 9.%’2 -+ 12333 =-1
5[1)1 — 7.732 + 9.733 =0.

We try to row reduce its augmented matrix to the identity matrix:

[0 3

6 —9
5 —7
6 —9
0 3
5 —7
=
0 3
5 —7
(1 2
0 3
0 3
=
0 3
0 0

—6
12
9

R1 < R2
R1 — R1 — R3
R3 — R3 —5R1
R3 — R3 — R2

This augmented matrix represents the linear system

1 — 2.1’2 + 3&33 =-1
31’2 — 6ZL’3 =9
01’1 + 01‘2 + OZL’3 = —4.

Notice that the bottom equation 0 = —4 is a contradiction with no solutions. Therefore the
original system has no solutions and is inconsistent.

Example 3.11. We will now solve the linear system

(©Erlend Skaldehaug Riis 2016
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FK1003 Lecture 1 3.3 Infinite or no Solutions

This is the same linear system as in the last example, except for that the last equation now
equals 2/3 instead of 0. We try to row reduce its augmented matrix to the identity matrix:

[0 3 —6]| 9

6 —9 12| —1
5 -7 9 |2/3

0 3 —6| 9 Rl ¢ R2
5 -7 9 |2/3
(1 2 3 |-5/3]
0 3 —6| 9 Rl — Rl — R3
5 -7 9| 2/3
(1 2 3 |-5/3]
0 3 —6| 9 R3 — R3 — 5R1
0 3 —627/3
~—
- :9 =
(1 2 3 |-5/3]
0 3 —6| 9 R3 — R3 — R2
00 0] 0
(1 2 3 |-5/3] )
0 1 —2| 3 R2 — ~R2
00 0] 0 3
10 —1]13/3
01 —2| 3 R1 — R1+ 2R2
00 0/ 0

This augmented matrix represents the linear system

T — .T3:13/3
To — 21’3 =3
01’1 + 01’2 + O[Eg =0.

Now the last equation says 0 = 0, which is always true. Therefore we only need to look at
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the first two equations to solve the system:
r1 — wx3=13/3
{ To — 223 = 3.
Suppose we have chosen a value for x;. Then the first equation gives us a value for x3:
xr3 =1z — 13/3.
Plugging this into the second equation gives us
o —2(x1 —13/3) =3
o — 211 +26/3 =3
Ty = 221 — 17/3.
So for any value x1, we get the solution
(1, 29, x3) = (21, 221 — 17/3, 21 — 13/3)

The linear system therefore has infinite solutions, and so does the original system.

3.4 Echelon Forms

Now we have row-reduced linear systems that have one, zero and infinite solutions. What
we actually did was to reduce the augmented matrix to echelon form matrices.

Definition 3.12 (Echelon Form). A matrix is in echelon form if it satisfies the following
three conditions:

1. All nonzero rows are above any rows of all zeros.

2. For each nonzero row, let its leading entry be the leftmost nonzery entry. Then each
leading entry of a row is in a column to the right of the leading entry of the row above
it. That is, every leading entry is strictly to the right of leading entries above it.

3. All entries directly below a leading entry are zero.

Definition 3.13 (Reduced echelon form). A matrix is in reduced echelon form if it satisfies
the three conditions above, and in addition satisfies the following:

4. Every leading entry is 1.

5. All entries directly above a leading entry are zero.

Example 3.14. Here are three examples of matrices in echelon form. If you want them in re-
duced echelon form, you need to replace every asterisk *’ directly above a leading entry, 1, by
a 0.

1 * * * 0 1 % % % % 1 00 2
01 % % = 00 0 1 % =x 01 0 -1
00 0 1 = 0000 1 = 001 =2
00 00O 00 0O0O0DU 0

00 0O0O00O 0
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FK1003 Lecture 1 3.5 Pivot Positions & Basic Variables

Example 3.15. Here are three more matrices, two of which are not echelon.
1 0 3 12 U-|
ML o 1 1

1

0 0]1 8 13
0 @0 1|

Echelon Not Echelon Not Echelon

Echelon and reduced echelon forms are useful to have, because every augmented matrix
can be reduced to echelon form, and from there, we can easily determine the solution set
of the original linear system. With a bit more terminology, we have a nice mathematical
framework for describing solutions of linear systems:

3.5 Pivot Positions & Basic Variables

Consider a linear system with its augmented matrix.

Definition 3.16 (Pivot position). A cell position in the matrix is a pivot position if it
contains a leading entry in an echelon form of the matrix.

Definition 3.17 (Pivot column). A pivot column is any matrix column that contains a pivot
position.

Theorem 3.18.

1. Every augmented matriz can be row reduced to an echelon form through elementary
rOW operations.

2. The echelon form of a matriz is not unique, but its pivot positions are unique.
3. The reduced echelon form is unique.

Recall that every column in the coefficient matrix corresponds to a variable: The first
column contains the coefficients of x, the second column contains the coefficients of x5, and
SO on...

Definition 3.19 (Basic variable). For a linear system, we say that a variable z; is a basic
variable if its corresponding column is a pivot column.

Definition 3.20 (Free variable). We say that a variable x; is a free variable if it is not a
basic variable.

Erlend Skaldehaug Riis 2016 11
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3.6 Classifying Linear Systems

We now have all the terminology we need to make some statements about the solutions of
linear systems in terms of their augmented matrices, pivot columns and echelon forms:

Proposition 3.21. A linear system has no solutions if and only if the rightmost column of
the augmented matrix is a pivot column.

Another way of stating this proposition is that a linear system has no solutions if and
only if the echelon form of the augmented matrix has a row with all zeros except for the
rightmost entry.

Example 3.22. Recall that for the linear system

31‘2 — 61‘3 =9
6.CE1 — 9.232 + 12333 =-1
51’1 — 7.1’2 + 9373 =0

we row reduced the augmented matrix until we got it in the form

1 0 —-1| 5
01 -2} 3 .
00 0 |—-4

This is in echelon form (but not reduced echelon form). We concluded that this system has
no solutions, because the last row represents the equation

0=—-4

which is never true. But this is equivalent to saying that the rightmost column is a pivot
column.

Theorem 3.23. Suppose a linear system has at least one solution. Then it has exactly one
solution if and only if all its variables are basic. Equivalently, it has infinite solutions if and
only if one or more variables is free. Furthermore, the dimension of the solution set is equal
to the number of free variables, or "degrees of freedom”.

To summarize: A linear system has

1. No solutions, if and only if the rightmost column of its augmented matrix
is a pivot column.

2. Otherwise, it has one unique solution if and only if all its variables are basic
variables.

3. Likewise, it has infinitely many solutions if and only if it has a free variable.

4. The dimension of the solution set is equal to the number of free variables.
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Example 3.24. Consider the 4 x 4 linear system

— 629 — 3x3 +424 =9

—3x1 — X9 —dx3+ 624 =0
r1+ 929 +4x3 — 9y = —7
—2x1 — 33+ 3z = —1.

This gives us the augmented matrix

0O -6 -3 4|9
-3 -1 =5 6 | 0
15 4 -9|-7
-2 0 -3 3 |-1

We can row reduce this to get the echelon form

1 54 =97
021 -3|-3
000 110
000 010

So the pivot positions are (1,1), (2,2) and (3,4), which means the pivot columns are column
1, 2 and 4. Equivalently, the basic variables are x1, x5 and x4, while the free variable is x3.
So we can conclude that this linear system has infinitely many solutions.

Once we have reduced the augmented matrix to echelon form, we can also find the solution
set explicitly:

1. Firstly, the third row represents the equation
Ty = 0.
So every solution will have x4 = 0.

2. The first and second rows represent the linear equations

T+ 51’2 +4CC3 — 91’4 = -7
QZEQ + x3— 31’4 = —3.

Since x4 = 0, this simplifies to

T+ 5&32 +4l’3 = -7
2[L’2 + X3 = —3.

3. x3 is a free variable, so we will let it be 'free’; i.e. we will only write it in terms of x;
and x,.
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4. Suppose we have fixed a value for x5. Then we can rearrange the second equation to
get a value for x3:
T3 = —2ZE‘2 - 3.

Plugging this into the first equation for x3 gives us
r1+5x24+4 3 =-T7
—~
=—2x9—3
T+ 5(E2 + 4<—2$2 — 3) = -7
T1+ 52y — 8y — 12 = -7
r1 = 3T9 + 5.

5. So for each value of x5, a solution (z1,x2, z3,0) requires that

r1=312+5 and T3 = —2x9 — 3

6. Therefore, our solution set becomes

S={(Bzy+5, zs, —225—3, 0)}

3.7 Algorithm for Row-reducing a Matrix

When row reducing a matrix to echelon form, some people are happy to just look at the
matrix and apply row operations as they see fit, while others prefer to have an algorithm to
follow. For the latter group, here is a short algorithm explaning how you can row reduce
any matrix to reduced echelon form:

1. Start at the left-most column and the top row.
2. Denote the entry in this column and row by «a.

(a) If a #£0:
i. Scalar multiply this row by 1/« to normalize « to 1.
ii. By adding multiples of this row to other rows, set all other entries in this
column to 0.

(b) If & = 0 but another entry in the column is non-zero, interchange the two rows
so that the non-zero entry is above the zero entries. Then set this new non-zero
entry to a and do step 2 (a).

(¢) If @« = 0 and all other entries in the column are zero, then this column is not a
pivot column, and you can’t do anything with it.

3. Move one column to the right and repeat step 2. If the previous column was a pivot
column, you move down one row to be below the pivot position. If the previous column
was not a pivot column, you do not move down one row.

4. Repeat these steps until you have gone through all the columns.

If you still wonder how to row-reduce matrices and feel like this algorithm did not explain
it well enough, there are plenty of websites that describe the algorithm in different ways. A
quick google should give you something helpful!
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