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2. INTEGRATION

FORK1005
Solutions for Exercises 4

July 30, 2015

2 Integration

2.1 Antiderivative
Solution 2.1. The antiderivative of C’(z) is

2
§x3+x2—5x+K

where K is the constant of integration. We have that C'(0) = 100 so

C(0) = K = 100.
So the cost function is 5
C(x) = 5333 + 2% — 5z + 100.
Solution 2.2.
2 1
(a) 3z° +C (d) —55+C
(e) g2**+C
1 3
(C) gﬂf5 + C

1
f) Zeom
()ae +C

Solution 2.3. If we differentiate xIn(z) — z + C, we get

(zln(z) —z + C’)/ = In(x) + g —1l=In(z)+1—-1=In(x),

which is what we wanted to show.
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2.2 Integral

2.2 Integral
Solution 2.4.

3 1
(a) §x2~|— §£B3 —2°+C

1
(b) gx?’ +32° + 92+ C

2.3 Integration Rules
Solution 2.5.

(a) 3e" +C (c) %ﬂ +2e" +C
(d) ~33 In(z) + C

Solution 2.6. 3In(x) + 2¢~ % + C

3 Integration Techniques

3.1 Integration by Parts
Solution 3.1. We have

so applying integration by parts, we get

1
/xe‘“” dx = %e“ - /1 . 16496 dx

T 1
— —641——64x+0.

Solution 3.2. We have

so applying integration by parts, we get

4 4
/2:6\/95— ldz = Ex(x— 1)32 — /g(:v— 132 dz

_4x

3 (z—1)%2 -

15
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Solution 3.3.

(a) Choose u' = e ™ and v = z. Then

so applying integration by parts, we get

/xex dr = —xze ™ + /ex der = —ze ™ —e* 4+ C.

(b) Choose ' =1 and v = In(z). Then

so applying integration by parts, we get

/m(g;) da = In(z)z — /g dz = In(z) —z + C.

3.2 Integration by Substitution

Solution 3.4. u =2 —4 so au 1 and dz = du. So we have
T

1 1
/(:v—4)6dx:/u6dx:/u6du:?u7~|—C':?(x—4)7+C’

d
Solution 3.5. u = 2% + 13 so Y 342 and dz = 3 du. So we have
x x

2
1
/3:1:2@3 +13)*dx = /3x2u20 dr = /%u% du = /u20 du = ﬁu21 +C
1
= i(:z;?’ +13)%' 4 C.

d
Solution 3.6. u =3 — 2 so v _ —1 and dz = — du. So we have

dx
1 1 1
/ dx:/adx:/—adu:—ln(u)—i—C:—ln(?)—x)—i—C’.

3—x

! _ 2 and dz = 4 du. So we have

d
Solution 3.7. u = /1 + 22 so d_;,b - Vida? wu x

2 2
/2u2du: §u3—|—C: §(1+x2)3/2+0.

/2:6\/1+x2dx:/2xudx:/2xugdu:
x
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Solution 3.8.

d 1
(a) Set u = x* + 10. Then d—u = 2z and dz = — du. So we have
x x

1 1
/233(:162 +10)°dx = /u50 dz = /2xu502— du = /u50 du = aum +C
x

1
= —(2? +10)°' + C.

51
5 du 1
(b) Set u = —ca®. Then — = —2czx and dz = ——— du. So we have
dx 2cx
/ —ea? g —/ udy = / T /1“d Ty
Te r= [ze'dr = ze'o—du = Hedu=—- =-3 :
(c) Set u = 24— 2% + 5. Then S — 423 — 622 and dz = — 1 du. So we h
c) Set u=ux x . Then = =4z 2* and dz = 35— du. So we have

/(4953 —62?)(2* — 22° +5) dr = /(4x3 — 62%)u” dw

4a% — 622
- [T

:/u7du
1

:§US+C’

1
= §($4 —22° + 5%+ C.
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3.3 Integration by Partial Fractions
Solution 3.9.
(a) We have 22 4+ 22 — 3 = (v + 3)(x — 1). We want A and B such that

A N B Ar— A+ Br+3B x
r+3 -1  (z+3)(xz—-1)  (z+3)(z—1)

This gives us the linear system

A+B=1
—A+3B=0,
which has the unique solution A = 3/4, B = 1/4. So we have the equality
T 3 1

ﬁ+ax—3_4@+3y+qx—n

x
" dr=
/:L’2+2:c—3 ¢

SO

3 1

4(z +3) - 4(x—1) de

—

In(z + 3) +%lln($ -1)+C.

A~ w

(b) We have 2% — 4z — 12 = (z — 6)(z + 2). We want A and B such that

A n B Ar+2A+ Br—6B 1+
r—6 x+2  (z—-6)(x+2)  (z—6)(z+2)

This gives us the linear system

A+B=1
24— 6B =1,

which has the unique solution A =7/8, B = 1/8. So we have the equality

1+ B 7 L 1
22 —4x —12  8(x—6) 8(z+2)

/ 1+« d
_— _dx =
2 — 4y — 12

SO

7 1
Rz —06) "R’z +2)

1
In(x — 6) + 3 In(x + 2).

dx

—

ool 3
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FORK1005
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August 10, 2015

2 Partial Differentiation

Solution 2.1.

(a) folz,y) =2, fi(z,y)=4

(b) folz,y) =3+5y, fi(x,y)=5x+2

(c) folz,y) =10xy’, f(x,y) = 152%y>

(d) filz,y) = 3e"y? — 2xe?,  f,(x,y) = 6e"y — x?e?

(e) fulw,y,2) =4y*2" —y, fi(x,y,2) =8wyz® —x, fl(r,y,2) = 122y°2>

(6) filw,y) = e — 22 fy(e,y) = e — In(a?)

3 First-Order Conditions
Solution 3.1.

(a

(0,0): Saddle point (neither).
(b) (2,0):

2,0): Minimum.
(¢) (z,z) for all z: All points are minima.

e) There are no stationary points.

(
(

)
)
)
(d) (0,0): Maximum.
)
£) (0,0): Maximum.
)

(g) (1,-2,5): Neither.

(©kFErlend Skaldehaug Riis 2015 1



FK1005 Solutions 5 4. SECOND-ORDER DERIVATIVES

4 Second-Order Derivatives

4.1 Second-Order Partial Derivatives
Solution 4.1.

(&) fro(z,y)=2, fo(r,y)=0, f(z,y)=-10

(b) fialz,y) =6, fi(z,y)=-4 f(z.y)=-2

(¢) f(w,y) =422° —10y°, [l (x,y) = =30ay?, [y (2,y) = =302y + 12y
(d) fo(x,y) =24zy, fo(zv,y)=122%—¢€", [l (2,y)=—xe¥

Yy 2y
(e) a/:/x(xvy) = _ﬁa ;;/y(%y) == ;, ;'y(x,y) = QID(ZL')

2 2

Yy Yy T
() fhley) = ——s fhay) = ——— f () =

(a2 +y2)** (22 +y2) i

(22 +y?)

5 Second Partial Derivative Test

Solution 5.1.

(a) Stationary point:
(0,0).

Hessian matrix:
6 0
Determinant:
D(z,y) =6-10—-0=60 > 0.

We have D(0,0) > 0 and f (0,0) = 6 > 0 so by the second partial derivative test,
(0,0) is a minimum.

(b) Stationary point:
0,0).

Hessian matrix:
-2 0
Determinant:
D(z,y)=-2-8—0=-16 < 0.
We have D(0,0) < 0 so by the second partial derivative test, (0,0) is a saddle point.
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(c)

8

Stationary point:
(0,0).

Hessian matrix:
6z O
Determinant:
D(z,y) =6z - (—8) — 0 = —48z.

We have D(0,0) = 0 so the results are inconclusive. However, an inspection of the
function should convince you that (0,0) is neither a maximum nor a minimum.

Stationary points:
(0,0) and (—4/3,4/3).

Hessian matrix:
6x —4
Hf(a:,y) - [_4 _4] .
Determinant:
D(z,y) = —24z — 16—

We have D(0,0) = —16 so by the second partial derivative test, (0, 0) is a saddle point.
We have D(—4/3,4/3) = 24(4/3) — 16 = 16 > 0, and " (—4/3,4/3) = —6(4/3) =
—8 < 0 so by the second derivative test, (—4/3,4/3) is a maximum.

Convex vs Concave Functions

Solution 8.1. (a) The Hessian is

(b)

12(x +2y)?  24(z + 2y)?

HI@Y) = o4(e + 29)? 48(x + 20)?

SO
D(z,y) =12 - 48(z + 2y)* — 24*(z + 2y)* = 0.

Since f” (z,y) = (v +2y)* > 0, f is convex.

The Hessian is

Hf(x’ y) - 4(1‘ + y)QG_(x+y)2 — 26—(x+y)2 4(1’ + y)26_(x+y)2 — 26_(55"‘?/)2

Az 4 y)2e~ T+ — 2= (@) 4(g 4 y)2e~(@H0)? 26(“9)2]

SO
D(z,y) = 0.

We have f” (0,0) = 0e® —2e° = —2 < 0 and f” (1,0) = 4e™! —2e71 =2/e > 0, so the

xrxr T
function is neither convex or concave.
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(c) The Hessian is

Hf(x.y)=1",  _,

62 + 2 0]

S0
D(z,y) = —12z — 4.

So D(0,0) = —4 < 0 and D(—1,0) = 8 > 0, the function is neither convex or concave.

9 Extra Practice Problems
Solution 9.1.

(a) The profit function is given by

P(z,y) = zp(z) + yq(y) — C(z,y)
= 2(100 — 4z) + y(80 — 2y) — 2 — 3y* — 2zy
= —b5z? — by? — 2zy + 100z + 80y.

(b) We set P, and P, equal to zero to get the linear system

r + by =40
ox + y = 5H0.

This has the unique solution

(z,y) = (35/4,25/4),

which is our stationary point. This is a local maximum if P/ (35/4,25/4) < 0 and
D(35/4,25/4) > 0. We have the Hessian matrix

Hf(ey) = [‘_120 _‘30]

so D(z,y) = 100 —4 = 96 > 0, and P/ (35/4,25/4) = —10 < 0. So by the second
partial derivative test, (35/4,25/4) is a local maximum. Since the profit function P is
concave, we conclude that (35/4,25/4) is a global maximum.
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