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[9.1] THE DETERMINANT OF A MATRIX
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Computing the determinant of a 3 X 3 matrix.

o

Theorem 9.3 A square matrix is nonsingular if and only if its determinant is

|
E nonzero.
|-

Proof Sketch  Recall that a square matrix A is nonsingular if and only if its row
echelon form R has no all-zero rows. Since each row of the square matrix R has
more leading zeros than the previous row, R has no all-zero rows if and only if
the jth row of R has exactly (j — 1) leading zeros. This occurs if and only if R
has no zeros on its diagonal. Since det R is the product of its diagonal entries,
A is nonsingular if and only if detR is nonzero. Since detR = *detA, A is
nonsingular if and only if detA is nonzero. M

Theorem 9.3 is obvious for 1 X1 matrices, because the equation ax = b
has a unique solution, x = b/a, for every b if and only if a # 0. Theorem 8.8
demonstrates Theorem 9.3 for 2 X 2 matrices.

EXERCISES

9.1 ) Write out the complete expression for the determinant of a 3 X 3 matrix — six terms,
each a product of three entries.

9.2  Write out the definition of the determinant of a 4 X 4 matrix in terms of the determi-
nants of certain of its 3 X 3 submatrices. How many terms are there in the complete
expansion of the determinant of a 4 X 4 matrix?

9.3 Compute out the expression on the right-hand side of (5). Show that it equals the
expression calculated in Exercise 9.1.

9.4 Show that one obtains the same formula for the determinant of a 2 X 2 matrix, no
matter which row or column one uses for the expansion.

9.5 Use a formula for the determinant to verify Theorem 9.1 for upper-triangular 3 X 3
matrices.

9.6 Verify the conclusion of Theorem 9.2 for 2 X 2 matrices by showing that the de-
terminant of a general 2 X 2 matrix is not changed if one adds » times row 1 to

e, TOW 2.

9.7 ) For each of the following matrices, compute the row echelon form and verify the
conclusion of Theorem 9.2:

n 2 40 01 2
]), b)(4 6 3), ¢) (3 4 5).
-6 —10 0 07 8
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@ Use the observation following Theorem 9.2 to carry out a quick calculatjgy, r}i’ :
determinant of each of the following matrices:

111 111
a)(142,b)o4s,
1 4 3 196

9.9 Use Theorem 9.3 to determine which of the matrices in Exercises 9.7 and g S
nonsingular. g

9.2 USES OF THE DETERMINANT

Since the determinant tells whether or not A~ ! exists and whether or not Ax
has a unique solution, it is not surprising that one can use the determinant to d
a formula for A™! and a formula for the solution x of Ax = b. First, we define
adjoint matrix of A as the transpose of the matrix of cofactors of A.

Definition For any » X n matrix A, let C;; denote the (4, j)th cofactor of A, thig
is, (—1)"*/ times the determinant of the submatrix obtained by deleting row i g
column j from A. The n X n matrix whose (i, j)th entry is Cj;, the (J, i)th cofa

of A (note the switch in indices), is called the adjoint of A and is written adj Al

Theorem 9.4 Let A be a nonsingular matrix. Then,

(a) A—I .

TotA - adj A, and

(b) (Cramer’s rule) the unique solution X = (xy, - - -, x,) of the n X1
system Ax = b is

. detB,- .
X = oA’ fori=1...,n

where B; is the matrix A with the right-hand side b replacing the it

column of A.

For 3 X 3 systems,
apxy + agxy +apxs = by
anxy + apx; + apxs = b

as1x) + 32Xy + diyzX3y = b3.
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196

Finally, we note three algebraic properties of the determinant functiog
we will find important in our use of determinants. W

Theorem 9.5 Let A be a square matrix. Then,

(a) detAT = detA,
(b) det(A - B) = (detA)(detB), and
(c) det(A + B) # detA + detB, in general.

Gaussian elimination is a much more efficient method of solving a ¢
of n equations in n unknowns than is Cramer’s rule. Cramer’s rule requires
evaluation of (n + 1) determinants. Each determinant is a sum of n! terms ang
term is a product of » entries. So, Cramer’s rule requires (n+1)! operations. () nth
other hand, the number of arithmetic operations required by Gaussian elimj
for such a system is on the order of n3. If n = 6 as in the Leontief model in
8.5, then (n + 1)! is 5040, while 3 is only 216; the difference grows exponenf
as n increases.

Nevertheless, Cramer’s rule is particularly useful for small linear system
which the coefficients a;; are parameters and for which one wants to obta
general formula for theendogenous variables (the x;’s) in terms of the param
and the exogenous variables (the b;’s). One can then see more clearly how ¢

' in the parameters affect the values of the endogenous variables.
Bl
L

EXERCISES

9.10 Verify directly that matrix (9) really is the inverse of matrix (8) in Example 9, 1

9.11 ) Use Theorem 9.4 to invert the following matrices:
4

C

1 2 3

21 v 5e) o

I 12 Use Cramer’s rule to compute x; and x, in Example 9.4.
3 7 4Use Cramer’s rule to solve the following systems of equations:

Sxtxm = 3 - 3 =2
x —

a) ! 2 by 4x; — bx;+x3 =7

Za—m=4 o +105, =1

1 2 = L

9.14 Verify the conclusions of Theorem 9.5 for the following pairs of matrices:

oa=(i3) =)
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= T will pro
EXERCISES ¥ it is eas

] | operatio
@ Compute the determinant of each of the following matrices: 1 One

row ech

o) (D) o (i ; Z), - R

7 8 9 matrix ¢

Fact 26.
of n X ¥

1 2 3 4
d) (0 0 4). e) ' AL
56 7 S Proof

] formy
Calculate detA for the last three matrices in the previous exercise by expanding since
along a column of A and along a row other than the first. Note that for the last twg
matrices, expanding along a row with many zeros can simplify the calculation.
26.3 Show that if a)as; ~ ay@ = O, then the expression for det A in (5) equals
—(aman — anap)(anas — asa)/a).
264 a) Check that (10) yields the same formula as (5).
b6) Use another row and another column of the 3 X 3 matrix'A to calculate detA and
check that you obtain the same expression as (5).
Write out a careful proof of Theorem 26.2.
Use the method of Figure 26.1 to compute the two 3 X 3 determinants in Exercise
26.1.
a) How many terms are there in the formula for the determinant of a general n X
matrix?
b) How many arithmetic operations (additions, subtractions, etc.) are needed to
compute the determinant of a general 7 X »# matrix?
If one used the technique described in Figure 26.1, the “determinant” of a 4 X 4
matrix would require only eight terms. Compare this with the number of terms that
are indicated in the previous exercise for a 4 X 4 determinant.

Then,
matri:

26.2 PROPERTIES OF THE DETERMINANT

We still must show that formula (8) for the determinant really works — that a I (since
matrix is nonsingular if and only if its determinant is nonzero. This result is i\ W
the goal of this section. Along the way we will develop some properties of the o, v (that.1
determinant. Since we are collecting all the important facts about the determinant S matric
in this section, we will begin by repeating the important fact which we proved at - : detB :
the end of the last section — Theorem 26.2. :

Fact 26.1. For any n X n matrix A, detA = detA”.

Fact 26.1 implies that any statement about how the rows of a matrix affect the : But th
value of the determinant is also true when applied to the columns of a matrix. We i which
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Theorem 26.4 can be applied to the equation AA~! = I to compute detA~! ip
terms of detA.

Theorem 26.5 If A is invertible, detA™! = 1/ detA.

1/2 -=1/2
Example 26.6 1fA = (3 1), then A7 = (_1§2 3§2). It is easy to

11

‘ compute that detA = 2 and detA™! = 1/2 = 1/ detA.

EXERCISES

_ (21 _ (4 3 _ (6 4
LetA—(1 1),3—(1 1),andC—(1 1).

a) Show that det(A + B) # detA + detB.

b) Show that detA + detB = det C and relate this to Fact 26.6.

Use induction to supply a more careful proof of Fact 26.8.

Write out a careful proof of Fact 26.11.

Show that an upper- or lower-triangular matrix is nonsingular if and only if every

diagonal entry is nonzero.

a) Compute the determinant of each of the following matrices by applying row
operations to obtain an upper-triangular matrix and then use Fact 26.11:

6 0 5

B g ;g : -1 20 8 17
3 ¢ 12 -4 13

4 =309 -3 12 2

b) Which of these matrices are nonsingular?
Find the exact values of £ which make each of the following matrices singular:

AR

Prove Theorem 26.5.

Prove the following results for n X »n matrices:

a) detrA = r" - detA;

b) det(—A) = (—1)"detA;

¢) det(A; - --A,) = (detA;) - - - (det4,);

d) detA* = (detA)* for positive integers &;

e) detA* = (detA) for all integers k if A is invertible.

Finish the proof of Lemma 26.1 for the case A = Ejj(r).

a) An orthogonal matrix is a nonsingular matrix such that A= = AT. Show that
the determinant of an orthogonal matrix is 1.

b) A skew symmetric matrix is a square matrix such that AT = —A. Show that if
n is odd, a skew symmetric matrix is singular. )

¢) Present some nontrivial examples of orthogonal matrices and skew-symmetric
matrices.

26.3 |

The dis¢
is an eff
this sect
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26.19  Show that the determinant of A is, up to sign, the product of its pivots.

26.20  Show that two # X 12 matrices A and B are invertible (nonsingular) if and only if
their product AB is invertible (nonsingular).

26.21  (difficult) Suppose that you are given a square malrix A, partitioned into four

submatrices:
_(Au Ap
A= (Am Azz)

where A|; and A, are square submatrices.
a) Show that

Ay 0
det( 0 A22> = detA,

b) Show that

Ay Ay _ A 0 _ )
det( 0 Azz) det (AZI Azz = dE[A“ detAzz.

¢) Suppose that A is nonsingular. Show that
Ap Ay _ {Au —ApAR Ay A . I 0
Ay A 0 A AR A 1)
d) Conclude that if Ay, is nonsingular,

det(A“ A‘z) = det(A,; — AppAL,A,)) - detAs.
Ay Ap -

¢) Use this method to compute

1
¢ | =(b—a)c—a)Xc—b)

26.3 USING DETERMINANTS

The discussion in the last section showed that the determinant as defined in ®)
is an effective tool for checking whether or not a square matrix is nonsingular. In
this section, we will describe some other applications of the determinant.




