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[2.5] DIFFERENTIABILITY AND CONTINUITY

29

EXERCISES

0 a) Use the geometric definition of the derivative o prove that the derivative of a

constant function is 0 everywhere and the derivative of f(x) = mxis f'(x) =m

for all x.

b) Use the method of the proof of Theorem 2.2 to prove that the derivative of x* is

3x2 and the derivative of x* is 4x°.
Find the derivative of the following functions at an arbitrary point:

ay — 7%,
c) 3x73?,
) 3x* —9x + 75235 — 3517,
g) (% + D(* +3x +2),
x—1
i) P
K (° — 3%,
m) (x° + 2x)*(4x + 5)%

b) 12x7%,
d) 3%,
£ ax® - 327,

By (M2 + x7V2)(4x° ~ 3Yx),

, x
) 2+1

) 5(x°—6x" + 3523,

Find the equation of the tangent line to the graph of the given function for the
specified value of x. [Hint: Given a point on a line and the slope of the line, one can

construct the equation of the line.)

a) f(x) =% % =3;

Prove parts g and b of Theorem 2.4,

by f(x) = x/(x* +2), x = L

In Theorem 2.3, we proved that the derivative of y = x* is y' = kx*~" for all positive
integers k. Use the Quotient Rule, Theorem 2.44, to extend this result to negative

integers k.

2.5 DIFFERENTIABILITY AND CONTINUITY

As we saw in Section 2.3, a function f is differentiable at xy if, geometrically
speaking, its graph has a tangent line at (xo, f(x0)), or analytically speaking, the

limit

|

im fxo + hy) — f(xo)

hy—0

hﬂ

)

c'sxists and is the same for every sequence {#,} which converges to 0. If a function
is differentiable at every point xo in its domain D, we say that the function is
d'ifferentiable. Only functions whose graphs are “smooth curves” have tangent
lines everywhere; in fact, mathematicians commonly use the word “smooth” in

place of the word “differentiable.”




i

[5.2] THENUMBERe 85

Negative bascs are not allowed for the e‘x'ponential function. For example, the
con k(x) = (—2)* would take on positive values for x an even integer and
ﬂmcn’ values for x an odd integer; yet it is never zero in between. Furthermore,
) n.e gaIIVGB cannot take the square root of a negative number, the function (—2)* is
e - defined forx =1 /2 or, more generally, whenever x is a fraction p/q and
:‘;; ea‘;egven integer. So, we can only work with exponential functions a*, where a

is a number greater than 0.

O
EXERCISES

(5.1 )Evaluate cach of the following:

23 2—3’ 81/3, 82/3, 8—‘2/3) 7.‘,0, 64_5/6, 6253/4, 25—5/2.

( 52 )Sketchthe graphof: @)y = 5% b)y =.2% ¢y =309 dy=1%

5.2 THE NUMBER e

Figure 5.2 presented graphs of exponential functions with bases 2, 3, and 10,
respectively. We now introduce a number which is the most important base for
an exponential function, the irrational number e. To motivate the definition of e,
consider the most basic economic situation — the growth of the investment in a
savings account. Suppose that at the beginning of the year, we deposit $4 into a
savings account which pays interest at a simple annual interest rate r. If we will
Tet the account grow without deposits or withdrawals, after one year the account
will grow to A + rA = A(1 + r) dollars. Similarly, the amount in the account in
any one year is (1 + r) times the previous year’s amount. After two years, there
will be

AQ+r)Y(1+r)=AQ1 +7)

dollars in the account. After ¢ years, there will be A(1 + )’ dollars in the account.

Next, suppose that the bank compounds interest four times a year; at the end of
each quarter, it pays interest at »/4 times the current principal. After one quarter
of a year, the account contains A + %A dollars. After one year, that is, after four
¢ompoundings, there will be A 1+ %)4 dollars in the account. After ¢ years, the
account will grow to A(1 + 5)4: dollars.

More generally, if interest is compounded » times a year, there will be A(1 + £)
dollars in the account after the first compounding period, A(1 + £)" dollars in the
account after the first year, and A(1 + £)" dollars in the account after ¢ years.
Many banks compound interest daily; others advertise that they compound

interest continuously. By what factor does money in the bank grow in one year at




90  EXPONENTS AND LOGARITHMS [5]

Base e Logarithms

Since the exponential function exp(x) = e* has all the properties that 10* has, it
also has an inverse. Its inverse works the same way that Log x does. Mirrorip
the fundamental role that e plays in applications, the inverse of ¢* is called the
natural logarithm function and is written as In x. Formally,

Inx =y & ¢ =y

Inx is the power to which one must raise e to get x. As we saw in general in (3),
this definition can also be summarized by the equations

" =x and Inée =x 4

The graph of e* and its reflection across the diagonal, the graph of In x, are similar
to the graphs of 10 and Log x in Figure 5.4.

Example 5.2 Let’s work out some examples. The natural log of 10 is the power
of e that gives 10. Since e is a little less than 3 and 32 = 9, ¢* will be a bit less
than 9. We have to raise ¢ to a power bigger than 2 to obtain 10, Since 33 = 27,
e® will be a little less than 27. Thus, we would expect that In 10 to lie between
2 and 3 and somewhat closer to 2. Using a calculator, we find that the answer
to four decimal places is In 10 = 2.3026.

We list a few more examples. Cover the right-hand side of this table and try
to estimate these natural logarithms.

Ine 1 since
In1 0 since
In0.1 = -2.3025- - since
In40 = 3.688- - since

In2 =0.6931--- since

EXERCISES

@ First estimate the following logarithms without a calculator. Then, use your calculator
to compute an answer correct to four decimal places:

a) Log 500, b) Logs, ¢) Log1234, d) Loge,
¢} In30, ) In100, g) In3 h) lnm
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[5.5] DERIVATIVES OF EXP AND LOG

EXERCISES
| Solve the following equations for x:
o2t =18 B =L 92 =¢

d) w2 =5 ) Inx® =5; f)lnxs/2 —0.5Inx = In25.

Derive formula for the amount of time that it takes money to triple in a bank account

-4 that pays interest at rate r compounded continuously.
' How quickly will $500 grow to $600 if the interest rate is 5 percent compounded

gontinuot sly?

5.5 DERIVATIVES OF EXP AND LOG

5

o work effectively with exponential and logarithmic functions, we need to com-

pute and use their derivatives. The natural logarithmic and exponential functions
have particularly simple derivatives, as the statement of the following theorem

indicates.

.
Theorem 5.2 The functions ¢° and Inx are continuous functions on their
‘domains and have continuous derivatives of every order. Their first derivatives

a) (¢
b) (Inx)

| I u(x) is a differentiable function, then

¢) (eu<x>)’ - (eu<x)) .

d) (nu(x)) w(x) if u(x) > 0.

b u(x)

We will prove this theorem in stages. That the exponential map is continuous
should be intuitively clear from the graph in Figure 5.4; its graph has no jumps
or discontinuities. Since the graph of Inx is just the reflection of the graph of &’
across the diagonal {x = y}, the graph of Inx has no discontinuities either, and so
the function In x is continuous for all x in the set R4+ of positive numbers.

It turns out to be easier to compute the derivative of the natural logarithm first.




(5.6] APPLICATIONS 97

The graph of e™*/2.

E Proof Since b = €™’ then b* = (€)= etnd* By equation b in Example
5.5,
@) = (") = @nb)e™*) = (nb)pH).  m

" Bwmple5.7 (107) = (In10)(10%).

Note that (b*)' = b* if and only if Inb = 1, that is, if and only if b = e. In
fact, the exponential functions y = ke® are the only functions which are equal to
their derivatives throughout their domains. This fact gives another justification for
e being considered the natural base for exponential functions.

EXERCISES

@ Compute the first and second derivatives of each of the following functions:

3x 24352 4 2 2 * Inx
a) xe*, b) e > € In(x* +2)%, d);, e)m, f)T
Use calculus to skelch the graph of each of the following functions:
a) xe*, b) xe™*, ¢) cosh(x) = (¢ + ¢7¥)/2.
Use the equation 10%08x = Example 5.7, and the method of the proof of Lemma
5.3 to derive a formula for the derivative of y = Logx.

—

5.6 APPLICATIONS

Present Value

Ma‘]}' cconomic problems entail comparing amounts of money at different points
of time in the Same computation. For example, the benefit/cost analysis of the
mﬂsi{uction of a dam must compare in the same equation this year’s cost of con-
Struction, future years’ costs of maintaining the dam, and future years’ monetary
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