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[9.1] THE DETERMINANT OF A MATRIX
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Computing the determinant of a 3 X 3 matrix.

" Theorem 9.3 A square malrix is nonsingular if and only if its determinant is

{ nonzero.

e

Proof Sketch  Recall that a square matrix A is nonsingular if and only if its row
echelon form R has no all-zero rows. Since each row of the square matrix R has
more leading zeros than the previous row, R has no all-zero rows if and only if
the jth row of R has exactly (j — 1) leading zeros. This occurs if and only if R
has no zeros on its diagonal. Since det R is the product of its diagonal entries,
A is nonsingular if and only if detR is nonzero. Since detR = *det4, A is
nonsingular if and only if detA is nonzero. ®

Theorem 9.3 is obvious for 1 X1 matrices, because the equation ax = b
has a unique solution, x = b/a, for every b if and only if @ # 0. Theorem 8.8
demonstrates Theorem 9.3 for 2 X 2 matrices.

EXERCISES

9.1 ) Write out the complete expression for the determinant of a 3 X 3 matrix — six terms,
each a product of three entries.

9.2  Write out the definition of the determinant of a 4 X 4 matrix in terms of the determi-
nants of certain of its 3 X 3 submatrices. How many terms are there in the complete
expansion of the determinant of a 4 X 4 matrix?

9.3 Compute out the expression on the right-hand side of (5). Show that it equals the
expression calculated in Exercise 9.1.

9.4 Show that one obtains the same formula for the determinant of a 2 X 2 matrix, no
matter which row or column one uses for the expansion.

9.5 Use a formula for the determinant to verify Theorem 9.1 for upper-triangular 3 X 3
matrices.

9.6 Verify the conclusion of Theorem 9.2 for 2 X 2 matrices by showing that the de-
terminant of a general 2 X 2 matrix is not changed if onc adds r times row 1 to

e, TOW 2,

9.7 ) For each of the following matrices, compute the row echelon form and verify the
conclusion of Theorem 9.2:

e 2 40 01 2
a)(2 1). Bl 4 6 3}, c)(345.
-6 -10 0 07 8
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Q@ Use the observation following Theorem 9.2 to carry out a quick calculallon of}
determinant of each of the following matrices: i

111 11
o1 4 2], blo4s]
1 4 3 19 6

9.9 Use Theorem 9.3 to determine which of the matrices in Exercises 9.7 and g S
nonsingular.

9.2 USES OF THE DETERMINANT

Since the determinant tells whether or not A ™! exists and whether or not Ax =
has a unique solution, it is not surprising that one can use the determinant to dg .
a formula for A ~! and a formula for the solution x of Ax = b. First, we define |
adjoint matrix of A as the transpose of the matrix of cofactors of A. R

Definition For any n X » matrix 4, let Cj; denote the (4, ))th cofactor of A, {hi
is, (—1)*/ times the determinant of the submatrix obtained by deleting row i gg
column j from A. The » X n matrix whose (i, j)th entry is Cj;, the (/, )th cofaf§
of A (note the switch in indices), is called the adjoint of A and is written adj A8

Theorem 9.4 Let A be a nonsingular matrix. Then,

(@) A7t = de%[A - adj A, and

(b) (Cramer’s rule) the unique solution x = (xy, -, x,) of the n X
system Ax = b is

det B;
i = i fi [ = 1) )
X detA or i n

where B; is the matrix A with the right-hand side b replacing the ithy
column of A.

For 3 X 3 systems,

apx +apx; T apxs = b
ayx) + anXs + ank; = by

a1 X + 33Xy + dyzXy = b3‘
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—

Finally, we note three algebraic properties of the determinant funetjg,

we will find important in our use of determinants. n Whig

Theorem 9.5 Let A be a square matrix. Then,

(@) detAT = detA,
(b) det(A - B) = (detA)(detB), and
(c) det(A + B) # detA + detB, in general.

(9.1 l_\’n Use Theorem 9.4 to invert the following matrices:

Gaussian elimination is a much more efficient method of solving a :i.'..
of n equations in n unknowns than is Cramer’s rule. Cramer’s rule requiresy
evaluation of (n + 1) determinants. Each determinant is a sum of a! terms an
term is a product of n entries. So, Cramer’s rule requires (n + 1)! operations. @
other hand, the number of arithmetic operations required by Gaussian elimjpaj
for such a system is on the order of n®. If n = 6 as in the Leontief model in §
8.5, then (n + 1)! is 5040, while n? is only 216; the difference grows expone;
as n increases. !

Nevertheless, Cramer’s rule is particularly useful for small linear systeps
which the coefficients a;; are parameters and for which one wants to ob i
general formula for the‘endogenous variables (the x;’s) in terms of the paramel
and the exogenous variables (the b;’s). One can then see more clearly how cha g
in the parameters affect the values of the endogenous variables. 1

EXERCISES

9.10 Verify directly that matrix (9) teally is the inverse of matrix (8) in Example %38

i) (i) o6

9.12 Use Cramer’s cule to compute x; and x, in Example 9.4,
9,13", Use Cramer’s rule to solve the following systems of equations:
Iy

Sx;+x= 3 - 3 %
a) ! b b) 4)Cl— 6X7_+X3=7

2x1 —x; = 4
x + 10x; = Ik

9.14 Verify the conclusions of Theorem 9.5 for the following pairs of matrices:

oa=(11) 2=()
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SIS - i will pro
EXERCISES it is eas

; operatio
Compute the determinant of each of the following matrices: : One
1 2 3 row ech
2
4) (- 1). b) ( 4 2)' g la s 6], Thepos:
L1 B 78 9 matrix ¢

Fact 26,
of n X u

1 2 3
d) (0 0 4). ¢) _ o
5 6 7 ‘ Proof

o i formu
Calculate detA for the last three matrices in the previous exercise by expanding | since

along a column of A and along a row other than the first. Note that for the last two
matrices, expanding along a row with many zetos can simplify the calculation.
263 Show that if ayja» ~ ayja;; = 0, then the expression for det A in (5) equals
~(anay — ayas)(ea — a}lalz)/alL
26.4 a) Check that (10) yields the same formula as (5). 3
b) Use another row and anolher column of the 3 X 3 matrix A4 to calculate detA and N
check that you obtain the same expression as (5).
26.5 Write out a carcful proof of Theorem 26.2.
26.6  Use the methad of Figure 26.1 to compute the two 3 X 3 determinants in Exercise
26.1.
26.7 @) How many lerms are there in the formula for the determinant of a general # X
matrix?
b) How many arithmetic operations (additions, subtractions, etc,) are needed to
compute the determinant of a general X 1t matrix?
If one used the technique described in Figure 26.1, the “determinant” of a 4 X 4
matrix would require only eight terms. Compare this with the number of terms that
are indicated in the previous exercise for a 4 X 4 determinant.

26.2 PROPERTIES OF THE DETERMINANT

We still must show that formula (8) for the determinant really works — that a ; (since
matrix is nonsingular if and only if its determinant is nonzero. This result is W
the goal of this section. Along the way we will develop some properties of the W (that‘1
determinant. Since we are collecting all the important facts about the determinant R [ matric
in this section, we will begin by repeating the important fact which we proved at ] detB
the end of the last section — Theorem 26.2. '

Fact 26.1. Forany n X n matrix A, detA = detA”.

Fact 26.1 implies that any statement about how the rows of a matrix affect the RS, But th

value of the determinant is also true when applied to the columns of a matrix. We which
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Theorem 26.4 can be applied to the equation AA™! = [ to compute detA i
terms of detA.

Theorem 26.5 If A is invertible, detA™" = 1/ detA.

( /2 —-1/2

Example 26.6 1fA = (3 ; ), then A™! = ~1/2 3/2)‘ It is easy to

1.1

v
| compute that detA = 2 and detA™! = 1/2 = 1/ detA.

EXERCISES

(21 _ {4 3Y . {6 4
LetA—(1 1),3—(1 1,andC—(1 1).

a) Show that det(A + B) # detA + det5.

b) Show that detA + detB = det C and relate this to Fact 26.6.

Use induction to supply a more careful proof of Fact 26.8.

Write out a careful proof of Fact 26.11.

Show that an uppes- or lower-triangular matrix is nonsingular if and only if every

diagonal entry is nonzero.
2) Compute the determinant of each of the following matrices by applying row
operations to obtain an upper-triangular matrix and then use Fact 26.11:

6 0
21 8
12 —4
-3 12

b) Which of these matrices are nonsingular?
Find the exact values of & which make each of the following matrices singular:

i ()

Prove Theorem 26.5.

Prove the following results for n X n matrices:

a) detrd = r" - det4;

b) det(—4) = (—1)" detA;

c) det(4, ---A,) = (detA,) - - (det4,);

d) detA* = (detA)* for positive integers k;

€) detA* = (detA)* for all integers k if A is invertible.

Finish the proof of Lemma 26,1 for the case A = Ey(r).

a) An orthogonal matrix is a nonsingular matrix such that A~! = A7, Show that
the determinant of an orthogonal matrix is +1.

b) A skew symmetric matrix is a square matrix such that AT = —A, Show that if
n is odd, a skew symmetric matrix is singular, )

¢) Present some nontrivial examples of orthogonal matrices and skew-symmelric
matrices.

26.3 |
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26.19  Show that the determinant of A is, up Lo sign, the product of iis pivols.

26.20 Show that two w X w matrices A and B are invertible (nonstnguiar) i and only if
their product A8 is invertible (nonsingular).

26.21  (dilficult) Suppose that you are given a square mairix A, partitioned into four

submatrices:

where A,y and Ay are square submuatrices,
@) Show thal

A i
de[( 0” /\zz) = derAyy - del Ay,

) Show that

f‘H A|) (/\“ (1]
de = de = detdr delAs,
L[( 0 A"”) det Ao R detidyy ~detds,

<) Suppose that Ay, is nonsinguli. Show that

("'\H /\33 . (/\H - /\|3A§1|/\;1 /\[7_ i / 0
/‘\1\ A/\y_v X 0 A 22 A zztf\gi r)

) Conclude that il A, is nonsingular,

dct(’:” A‘“> = del(dyy - ApALL AL - detAy,
A2 A -

) Use this method to compute

2 1 =5 3
J I 4 1
g 1 31
s 2 5 2
Use row reduction 1o show that
| Lol
a b oo |=(-a)e-a)c— D).
@t b ¢l

26.3 USING DETERMINANTS

The discussion in the last section showed that the detecminant as defined in (6)
is an effective ol for checking whether or nota square matrix is nonsingular, In
this section, we will describe some other applications of the determinant.
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