Lecture 2 FORK 1003 Mathematics
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1 Functions and derivatives

2 Exponential functions and logarithms
3 Higher derivations
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[2.5] DIFFERENTIABILITY AND CONTINUITY 29

EXERCISES

2.10 a) Use the geometric definition of the derivative to prove that the derivative of a
constant function is O everywhere and the derivative of f(x) = mx is f'(x) = m

forall x.
b) Use the method of the proof of Theorem 2.2 to prove that the derivative of x> is

- 3x% and the derivative of x* is 4x>.
@Fmd the derivative of the following functions at an arbitrary point:

a) -7, b) 12x7%,

¢) 3x7*, dy LJ/x

) 3x% — 9x + 75 - 3x12, f) 4x° — 3x17,

g) (& + 1)(x* + 3x +2), By (1% + x7V2)4x° - 3x),
L x—1 ) x

DT D Y

Ky (° = 3%, D 5 — 6x + 303,

m) (€ + 2x)°(dx + 5)%

isted as

i Find the equation of the tangent line to the graph of the given function for the
ms k in

specified value of x. [Hint: Given a point on a line and the slope of the line, one can
construct the equation of the line.]

f some ¥ Q) fy=x, m=3% b f@)=x/(¥+2 xn=1

Prove parts a and b of Theorem 2.4.

In Theorem 2.3, we proved that the derivative of y = x* is y’ = kx*~! for all positive
integers k. Use the Quotient Rule, Theorem 2.4d, to extend this result to negative
integers k.

2.5 DIFFERENTIABILITY AND CONTINUITY

As we saw in Section 2.3, a function f is differentiable at xp if, geometrically
speaking, its graph has a tangent line at (xo, f(xo)), or analytically speaking, the
limit

. f(xﬂ + hn) - f(-\'[})

lim
h,—0 h 1

©)

fexists and is the same for every sequence {,} which converges to 0. If a function
is differentiable at every point xg in its domain D, we say that the function is
Qifferentiable. Only functions whose graphs are “smooth curves” have tangent
lines everywhere; in fact, mathematicians commonly use the word “smooth” in
place of the word “differentiable.”
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[5.2] THENUMBERe 85

Negative bases are not allowed for the g)(.ponential function. For e).(ample, the
"~ function k(¥) = (—2)* would take on positive values for x an even integer and
lues for x an odd integer; yet it is never zero in between. Furthermore,
e ou cannot take the square root of a negative number, the function (—2)* is
Ef;:lc:"in Jefined for x = 1/2 or, more generally, whenever x is a fraction p/q and

i is an even integer. So, we can only work with exponential functions a*, where a
q

is a number greater than 0.

-
EXERCISES

5.1 )Evaluate each of the following:

2, 27 83 8 87 A0 6475 6254 2572

( 52 Sketch the graphof: a)y =5% b)y =.2%, ¢)y=3(5);, dyy=1%

" =2 THE NUMBER e

- Figure 5.2 presented graphs of exponential functions with bases 2, 3, and 10,
respectively. We now introduce a number which is the most important base for
an exponential function, the irrational number e. To motivate the definition of e,
consider the most basic economic situation — the growth of the investment in a
savings account, Suppose that at the beginning of the year, we deposit $4 into a
savings account which pays interest at a simple annual interest rate . If we will
let the account grow without deposits or withdrawals, after one year the account
will grow to A + rA = A(1 + r) dollars. Similarly, the amount in the account in

any one year is (1 + r) times the previous year’s amount. After two years, there
will be

AQ+r)Y 1 +r)y=A0 +7r)?

dollars in the account. After ¢ years, there will be A(1 + r)* dollars in the account.

Next, suppose that the bank compounds interest four times a year; at the end of
each quarter, it pays interest at 7/4 times the current principal. After one quarter
of a year, the account contains A + 7A dollars. After one year, that is, after four
compoundings, there will be A (1 + %)4 dollars in the account. After ¢ years, the
-account will grow to A(1 + %)‘" dollars.

More generally, if interest is compounded r times a year, there will be A(1 + £)
dollars in the account after the first compounding period, A(1 + ﬁ)" dollars in the
accc;llnt after the first year, and Al + ,’7)"‘ dollars in the account after ¢ years.
'iﬂieresa[-ngo:?nks compound interest daily; others ‘advertise that the.:y compound

inuously. By what factor does money in the bank grow in one year at
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90  EXPONENTS AND LOGARITHMS [5]

Base e Logarithms

Since the exponential function exp(x) = €* has all the properties that 10* has, j¢
also has an inverse. Its inverse works the same way that Log x does. Mirrorip
the fundamental role that e plays in applications, the inverse of ¢* is called the
natuaral logarithm function and is written as In x. Formally,

Inx=y & ¢& =y

Inx is the power to which one must raise e to get x. As we saw in general in (3),
this definition can also be summarized by the equations

In

e =x and Iné =x @)

The graph of ¢* and its reflection across the diagonal, the graph of In x, are similar
to the graphs of 10* and Log x in Figure 5.4.

Example 5.2 Let’s work out some examples. The natural log of 10 is the power
of e that gives 10. Since e is a little less than 3 and 32 = 9, ¢? will be a bit les
than 9. We have to raise e to a power bigger than 2 to obtain 10, Since 33 = 27,
> will be a little less than 27. Thus, we would expect that In 10 to lie between
2 and 3 and somewhat closer to 2. Using a calculator, we find that the answer
to four decimal places is In 10 = 2.3026.

We list a few more examples. Cover the right-hand side of this table and try
to estimate these natural logarithms.

Ine =1

Inl =0

In0.1 = -2.3025- - -
In40 = 3.688- - -

In2 =06931---

EXERCISES

First estimate the following logarithms without a calculator. Then, use your calculator
to compute an answer cuitecl (o four decimal places:

a) Log500, b) Logs, ¢) Log1234, d) Loge,
e) In30, f) 1n100, g In3, h) Inm




[5.5] DERIVATIVES OF EXP AND LOG

EXERCISES

Solve the following equations for x:

p 2 =18 b =1L 9= &
4 »2=75 e mxt=5 ) Inx’? —0.5Inx = In25.
a formula for the amount of time that it takes money to triple in a bank account

rate r compounded continuously.
500 grow to $600 if the interest rate is 5 percent compounded

 Derive

= {hat pays interest at

7 How quickly will $
continuously?

y with exponential and logarithmic functions, we need to com-

'Ih work effectivel
pute and use their derivatives. The natural logarithmic and exponential F. .

' have particularly simple derivatives, as the statement of the following theorem

X
Theorem 5.2 The functions ¢° and Inx are continuous functions on their
| domains and have continuous derivatives of every order. Their first derivatives

- | are given by

a) (¢

b) (nx)

If u(x) is a differentiable function, then

By (eu(x))’ - (eu(x)) .

dy (Inu(x)) % if u(x) > 0.

.

We will prove this theorem in stages. That the exponential map is continuous

. shou'ld be intuitively clear from the graph in Figure 5.4; its graph has no jumps

or discontinuities. Since the graph of Inx is just the reflection of the graph of &*

dCross th? diagonal {x = y}, the graph of Inx has no discontinuities either, and so
the function In x is continuous for all x in the set Ry + of positive numbers.

It turns out to be easier to compute the derivative of the natural logarithm first.




[5.6] APPLICATIONS 97

The graph of ™=/,

Proof Since b = e, then b* = (e"?)" = ("% By equation b in Example

® = (€7%) = b)) = (nb)p).  ®

: Fxample 5.7 (107)' = (In10)(10%).

; Note that (b*)' = b* if and only if Inb = 1, that is, if and only if b = e. In

. fact, the exponential functions y = ke” are the only functions which are equal to

~ their derivatives throughout their domains. This fact gives another justification for
e being considered the narural base for exponential functions.

EXERCISES

5.8 | Compute the first and second derivatives of each of the following functions:
x +3-2 4 2 2 23 Inx
a) xe*, b) ¥ o) In(xt + 22, d) = 95 N+
Use calculus to sketch the graph of each of the following functions:
a) xe*, b) xe™, ¢) cosh(x) = (&' +e7*)/2.
Use the equation 10“%8* = x, Example 5.7, and the method of the proof of Lemma
3.3 to derive a formula for the derivative of y = Logx.

5.6 APPLICATIONS

_ Present Value

IMaT_l}' economic problems entail comparing amounts of money at different points

& :'zznt::le n the same computation. For example, the benefit/cost analysis of the
s'tmm?;?i;!lltOf a dam must compare in the same equation this year’s cost of con-

» Juture years’ costs of maintaining the dam, and future years’ monetary
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