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[9.1] THE DETERMINANT OF A MATRIX

e Az -

Computing the determinant of a 3 X 3 matrix.

Theorem 9.3 A square matrix is nonsingular if and only if its delerminant is
nONZETO.

Proof Sketch  Recall that a square matrix A is nonsingular if and only if its row
echelon form R has no all-zero rows. Since each row of the square matrix R has
more leading zeros than the previous row, R has no all-zero rows if and only if
the jth tow of R has exactly (j — 1) leading zeros. This occurs if and only if R
has no zeros on its diagonal. Since detR is the product of its diagonal entries,
A is nonsingular if and ounly if detR is nonzero. Since detR = *detA, A is
nonsingular if and only if dctA is nonzero. ®

Theorem 9.3 is obvious for 1 Xal matrices, because the equation ax = b
has a unique solution, x = b/a, for every b if and only if ¢ # 0. Theorem 8.8
demonstrates Theorem 9.3 for 2 X 2 matrices.

EXERCISES
'@ Write out the complete expression for the determinant of a 3 X 3 matrix — six terms,
each a product of threc entries.
Write out the definition of the detcrminant of a 4 X 4 matrix in terms of the determi-
nants of certain of its 3 X 3 submatrices. How many terms are there in the complete
expansion of the determinant of a 4 X 4 matrix?
9.3 Computc out the expression on the right-hand side of (5). Show that it equals the
expression calculated in Exercise 9.1.
9.4 Show that one obtains the same formula for the determinant of a 2 X 2 matrix, no
matter which row or column one uses for the expansion.
9.5 Use a formula for the determinant to verify Theorem 9.1 for upper-triangular 3 X 3
matrices.
9.6 Verify the conclusion of Theorem 9.2 for 2 X 2 matrices by showing that the de-
terminant of 4 general 2 X 2 matrix is not changed if one adds r times row 1 to
e, TOW 2,
' 9.7\ For each of the following matrices, compute the row echelon form and verify the
conclusion of Theorem 9.2:

11 2 4 0 01 2
a) (2 1), b) ( 4 6 31, c) (3 4 5),
-6 =10 0 0 7 8

>
9.2
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TN
Qy Use the observation following Theorem 9.2 to carry out a quick calculatigy o
determinant of each of the following matrices: 3

111 111
a)(142,b)()45,
1 4 3 196
9.9 Use Theorem 9.3 to determine which of the matrices in Exercises 9.7 angd 980
nonsingular. s

9.2 USES OF THE DETERMINANT

Since the determinant tells whether or not A ™! exists and whether or not Ax =
has a unique solution, it is not surprising that onc can use the determinant to deril
a formula for A~" and a formula for the solution x of Ax = b. First, we definel
adjoint matrix of A as the transpose of the matrix of cofactars of A. 2

Definition For any n X n matrix 4, let Cy; denote the (i, /)th cofactor of 4, i
is, (—1)'*/ times the detcrminant of the submatrix obtained by deleting row i
column j from A. The n X n matrix whose (i, j)th entry is Cj;, the (j, i)th cofagl§
of A (note the switch in indices), is called the adjoint of A and is written adj&

Theorem 9.4 Let A be a nonsingular matrix. Then,

(@) A7l = -adj 4, and

detA
(b) (Cramer’s rule) the unique solution x = (xi, -, x,) of the n X
system Ax = b is

det B;
X = £l R fori=1,...,n
detA

where B; is the matrix A with the right-hand side b replacing the { Iy
column of A.

For 3 X 3 systems,
apxy +apx; tape = b
ani Xy + anx; + anxy = bz

as1 Xy + aspxy + ayXy = b3.
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Finally, we note three algebraic propertics of the determinant functiog
we will find important in our use of determinants.

Theorem 9.5 Let A be a square matrix. Then,

(a) detAT = detA,
(b) det(A - B) = (detA)(detB), and
(c) det(A + B) # detA + detB, in general.

Gaussian elimination is a much more efficient method of solving a gyqil
of n equations in n unknowns than is Cramer’s rule. Cramer’s rtule requis
evaluation of (n + 1) determinants. Each determinant is a sum of n! terms and
term is a product of » entries. So, Cramer’s rule requires (n+ 1)! operations. @
other hand, the number of arithmetic operations required by Gaussian elimj
for such a system is on the order of n?. If n = 6 as in the Leontief model in §
8.5, then (n + 1)! is 5040, while n’ is only 216; the difference grows exponentia
as n increases.

Nevertheless, Cramer’s rule is particularly useful for small linear syst
which the coefficients a;; are parameters and for which one wants to o
general formula for the endogenous variables (the x;’s) in terms of the parany
and the exogenous variables (the b;’s). One can then see more clearly how chafig
in the parameters affect the values of the endogenous variables.

EXERCISES

9.10 Verify directly that matrix (9) really is the inverse of matrix (8) in Example 9.3
9.11 ) Use Theorem 9.4 to invert the following matrices:

2t b (é : Z), o (4 2)

1 0 8

—

;_)_._12 Use Cramer’s rule to compute x, and x, in Example 9.4.
Q. 13 , Use Cramer’s rule to solve the following systems of equations:

2 — 3x =2
5X1+X2 =3 1 &
b) 4X| - 6X7_+X3 =17
2x; — x; = 4
X1+10X2 =1

9.14 Verify the conclusions of Theorem 9.5 for the following pairs of matrices:

bas(t) a4
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4  will pro
EXERCISES it is eas:

] ' operatio
Compute the determinant of each of the following matrices: I One

1 2 3 i . tow ech
a) (2 1), b)( ¢ 2)_ o9 l4 5 6], - §  Thepos
. -8 4 789 : matrix ¢

Fact 26.

1 2 3 of n X s
d) (O 0 4) ; e) : e
56 7 . Proof
il formu
Calculate detA for the [ast three matrices in the previous exercise by expanding i3 since
along a column of A and along a row other than the first. Note that for the last two o 3
matrices, expanding along a row with many zeros can simplify the calculation.
26.3 Show that if a;1a: ~ aya;2 = 0, then the expression for det A in (5) equals
=(amay — anaa)anas: — aJlalZ)/"Il-
26.4 a) Check that (10) yields the same formula as (5).
b) Use another row and another column of the 3 X 3 matrix A to calculate det A and
check that you obtain the same expression as (5).
Write out a careful proof of Theorem 26.2.
Use the method of Figure 26.1 to compute the two 3 X 3 determinants in Exercise
26.1.
a) How many terms are there in the formula for the determinant of a general 1 X n
matrix?
b) How many arithmetic operations (additions, subtractions, etc.) are needed to
compute the determinant of a general n X n matrix?
If one uscd the technique described in Figure 26.1, the “determinant” of 2 4 X 4
matrix would require only eight terms. Compare this with the number of terms that
are indicated in the previous exercise for a 4 X 4 determinant.

26.2 PROPERTIES OF THE DETERMINANT

We still must show that formula (8) for the determinant really works — that a
matrix is nonsingular if and only if its determinant is nonzero. This result is
the goal of this section. Along the way we will develop some properties of the
determinant. Since we are collecting all the important facts about the determinant
in this section, we will begin by repeating the important fact which we proved at
the end of the last section — Theorem 26.2.

Fact 26.1. Forany n X n matrix A, detA = detAT,

Fact 26.1 implies that any statement about how the rows of a matrix affect the
value of the determinant is also true when applied to the columns of a matrix. We
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Theorem 26.4 can be applied to the equation AA ™! = [ to compute detA™! ip
terms of detA.

Theorem 26.5 If A is invertible, detA™' = 1/ detA. '
—

o 3 1/2 -1/2 .
Example 26.6 fA = (1 | }) then A7l = (_1;2 342)_ It is easy to

' compute that detA = 2 and detA™! = 1/2 = 1/ detA.

EXERCISES

_f2 1 _ (4 3\ _ {6 4
LetA—(1 1),3—(1 1),andC—(1 1).

a) Show that det(A + B) # detA + detB.
b) Show that detA + detB = detC and relate this to Fact 26.6.
26.10 Use induction to supply a more careful proof of Fact 26.8.
26.11 Write out a careful proof of Fact 26.11.
26.12 Show that an upper- or lower-triangular matrix is nonsingular if and only if every

diagonal entry is nonzero.
a) Compute the determinant of each of the following matrices by applying row
operations to obtain an upper-triangular matrix and then use Fact 26.11:

6 0 5

. 2 . = ) 21 8 17
ORI IORNRZINcHE 12 -4 13

o -3 12 2

b) Which of these matrices are nonsingular?
Find the exact values of k which make each of the following matrices singular:

6 o1

Prove Theorem 26.5.

Prove the following results for n X n matrices:

a) detrA = r" - detA;

b) det(—A) = (—1)"det4A;

c) det(4; - --A,) = (detd,) - -(det4,);

d) detA* = (detA)* for positive integers k;

¢) detA* = (detA)* for all integers k if A is invertible.

Finish the proof of Lemma 26.1 for the case A = Ejj(r).

a) An orthogonal matrix is a nonsingular matrix such that A~' = AT. Show that
the determinant of an orthogonal matrix is *1.

b) A skew symmetric matrix is a square matrix such that A” = —A. Show that if
n is odd, a skew symmetric matrix is singular. )

¢) Present some nontrivial examples of orthogonal matrices and skew-symmetric
matrices.
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26,49 Show thal the determinant of A is, up to sign, the product of ils pivels.

20.20 Show thar two a0 scmairices A and B oare fnvertible taonsingalar il and only it

(heir praduct AR is invertible (nonsingular).
26.21

submidrices:

where Ay and Ay are square submatrices.
@b Show thai

sy 0N i
(J\_f( 0 -\7;) E Jkri.\|1 \I\.’“l_\v‘.

) Show that

u\,-‘.( :’)‘ :' ) = det ('::” A'i) = detd ) - deld oo,

) Suppose thai A s nonsinaaliae Show tha

iy ) (A o) [ )

v Conelude that if As is nonsingulay,

i - : :
d”{._.-af' ) = Rl = A ) ot

=) Use this methed © compute

|
—
o5

|
(S TOR A
B~ —

26.3  USING DETERMINANTS

The discussion in the last section showed that the determinant as defined in (5)
is an effective ol for checking whether or not a square matrix is nonsingular. Tn
this section, we will desceribe some other applications of the determinant.

tditticulti Suppose that you are given o square nlaltix A, partitioned inlo four
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