Key Problems

Problem 1.

Solve the exact differential equations:

a)
$$3t^2 - 2t + 2y \cdot y' = 0$$

b)
$$2y - 3t^2 + 2(y+t)y' = 0$$

b)
$$2y - 3t^2 + 2(y+t)y' = 0$$
 c) $\frac{y(1-2\ln t)}{t^3} + \frac{\ln t}{t^2} \cdot y' = 0$

Problem 2.

Find the equilibrium states and determine their stability. Sketch the solution curve y = y(t).

a)
$$y' = 6 - 2y$$

b)
$$y' = y^2 - 4$$

c)
$$y' = 5y(1 - y/10)$$

Problem 3.

Solve the differential equations:

a)
$$y'' + 6y' - 16y = 16t - 22$$

b)
$$y'' + 6y' + 9y = 4e^{-t}$$

c)
$$y'' - 3y' + 2y = 3e^{2t}$$

d)
$$y'' - y = t^2$$

Problems from the Workbook and Differential Equations

Workbook [W]

10.13 - 10.16, 11.1 - 11.17 (full solutions in the workbook)

Differential equations [DE] 1.20 - 1.34 (full solutions on the web page)

Answers to Key Problems

Problem 1.

a)
$$y = \pm \sqrt{t^2 - t^3 + C}$$

b)
$$y = -t \pm \sqrt{t^2 + t^3 + C}$$

c)
$$y = \frac{Ct^2}{\ln t}$$

Problem 2.

- a) $y_e = 3$ is globally asymptotically stable
- b) $y_e = -2$ is stable (but not globally asymptotically stable), $y_e = 2$ is unstable
- c) $y_e = 0$ is unstable, $y_e = 10$ is stable (but not globally asymptotically stable)

Problem 3.

a)
$$y = C_1 e^{-8t} + C_2 e^{2t} + 1 - t$$

b)
$$y = C_1 e^{-3t} + C_2 t e^{-3t} + e^{-t}$$

c)
$$y = C_1 e^{2t} + C_2 e^t + 3te^{2t}$$

d)
$$y = C_1 e^t + C_2 e^{-t} - t^2 - 2$$