Key Problems

In Problem 1-3, we consider the vectors given by

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1\\4\\-1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\-2\\5 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} -1\\3\\-7 \end{pmatrix}, \quad \mathbf{v}_5 = \begin{pmatrix} 1\\-1\\3 \end{pmatrix}$$

Problem 1.

Determine if the vectors are linearly independent:

a)
$$\{\mathbf{v}_1, \mathbf{v}_2\}$$
 b) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ c) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5\}$ d) $\{\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ e) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$

Problem 2.

Compute the dimension of V, and find a base \mathcal{B} of V:

a) $V = \text{span}(\mathbf{v}_1, \mathbf{v}_2)$ b) $V = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ c) $V = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5)$ d) $V = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$

Problem 3.

Let $A = (\mathbf{v}_1 | \mathbf{v}_2 | \mathbf{v}_3 | \mathbf{v}_4 | \mathbf{v}_5)$ be the 3×5 matrix with $\mathbf{v}_1, \dots, \mathbf{v}_5$ as columns.

- a) Compute dim Null(A), and find a base \mathcal{B} for Null(A).
- b) Compute dim $\operatorname{Col}(A)$. What can you say about the linear subspace $\operatorname{Col}(A)$ in \mathbb{R}^3 based on this?

Problem 4.

Find a parametric description of the line through the points (1,3,2,5) and (-2,4,5,1) in \mathbb{R}^4 . Determine the intersection points (x,y,z,w) of this line and the hyperplane w = 9.

Problem 5.

Let A be a 5×7 matrix. Find dim Col(A) + dim Null(A).

Exercise problems

Exercise problems: Eriksen [E] 2.1 - 2.16 (see It's Learning) Optional problems: Workbook [W] 3.1 - 3.15

Answers to Key Problems

Problem 1.

a) Yes

b) No

c) Yes

e) No

d) Yes

Problem 2.

a) dim V = 2, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ b) dim V = 2, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ c) dim V = 3, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5\}$ d) dim V = 3, and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$

Problem 3.

a) dim Null(A) = 2 and $\mathcal{B} = {\mathbf{w}_1, \mathbf{w}_2}$ is a base for Null(A) with

$$\mathbf{w}_{1} = \begin{pmatrix} -3\\2\\1\\0\\0 \end{pmatrix}, \quad \mathbf{w}_{2} = \begin{pmatrix} -6\\4\\0\\-1\\1 \end{pmatrix}$$

b) dim $\operatorname{Col}(A) = 3$ and this means that $\operatorname{Col}(A) = \mathbb{R}^3$.

Problem 4.

Parametric description:
$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 1-3t \\ 3+t \\ 2+3t \\ 5-4t \end{pmatrix}$$
,

Intersection point: (x, y, z, w) = (4, 2, -1, 9)

Problem 5.

7