Key Problems

Problem 1.

Compute the determinant of these matrices:

a)
$$A = \begin{pmatrix} 1 & 2 & 5 \\ 3 & 1 & 2 \\ 1 & 2 & 4 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 4 & 2 & 0 \\ 0 & 2 & 4 & 0 \\ 3 & 0 & 0 & 1 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & a & b \\ a & 1 & c \\ b & c & 1 \end{pmatrix}$

Problem 2.

Use minors to determine the rank of these matrices. Can you find a base of the column space Col(A) based on the minors?

a)
$$A = \begin{pmatrix} 4 & 1 & 1 & 3 & 7 \\ 2 & 1 & 0 & 1 & 0 \\ 1 & 0 & 3 & 1 & 0 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 2 & -1 & 7 & 3 \\ 4 & 5 & 11 & 10 \end{pmatrix}$ c) $A = \begin{pmatrix} 3 & 0 & 0 & 7 \\ 0 & 5 & 5 & 0 \\ 0 & 5 & 5 & 0 \end{pmatrix}$

Problem 3.

Use minors to find the rank of these matrices:

a)
$$A = \begin{pmatrix} 1 & 3 & t \\ 2 & 5 & 7 \end{pmatrix}$$
 b) $A = \begin{pmatrix} a & 7 & -3 & 5 & 10 \\ 2 & -3 & 1 & 4 & 18 \\ 1 & 24 & -10 & 11 & 12 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & a & b \\ a & b & 1 \end{pmatrix}$

Problem 4.

Use minors to determine the number of solutions of these linear systems. What are the possible choices of free variables, if any?

	x	+	y	+	z	=	6			x	+	4y	+	5z	_	3w	=	6
a)	x	+	2y	+	tz	=	13	b)	4	2x	+	7y	+	z			=	4
	x	+	3y	+	9z	=	24			x	+	5y	+	4z	_	8w	=	1

Problems from the Workbook

Exercise problems: Eriksen [E] 3.1 - 3.15 (see It's Learning) Optional problems: Workbook [W] 2.1 - 2.25

Answers to Key Problems

Problem 1.

a) |A| = 5b) |A| = -96c) $|A| = 1 - a^2 - b^2 - c^2 + 2abc$

Problem 2.

The pivot positions are marked in blue, and the corresponding vectors form a base of Col(A).

a)
$$\operatorname{rk}\begin{pmatrix}4 & 1 & 1 & 3 & 7\\2 & 1 & 0 & 1 & 0\\1 & 0 & 3 & 1 & 0\end{pmatrix} = 3$$
 b) $\operatorname{rk}\begin{pmatrix}1 & 3 & 2 & 4\\2 & -1 & 7 & 3\\4 & 5 & 11 & 10\end{pmatrix} = 3$ c) $\operatorname{rk}\begin{pmatrix}3 & 0 & 0 & 7\\0 & 5 & 5 & 0\\0 & 5 & 5 & 0\end{pmatrix} = 2$

Problem 3.

a)
$$\operatorname{rk} A = 2$$
 for all t
b) $\operatorname{rk} A = \begin{cases} 2, & a = 1\\ 3, & a \neq 1 \end{cases}$
c) $\operatorname{rk} A = \begin{cases} 1, & (a,b) = (1,1)\\ 2, & (a,b) \neq (1,1) \end{cases}$

Problem 4.

- a) One solution if $t \neq 5$, and no solutions if t = 5
- b) Infinitely many solutions (one degree of freedom). The possible choices for a free variable are x, y, z or w.