Problems for Lecture 12

Key Problems

Problem 1.

Write the systems of differential equations on matrix form and solve them:
a) $\begin{aligned} & y_{1}^{\prime}=2 y_{1}+5 y_{2} \\ & y_{2}^{\prime}=5 y_{1}+2 y_{2}\end{aligned}$
b) $\begin{array}{llc}y_{1}^{\prime} & = & y_{2} \\ y_{2}^{\prime} & = & 4 y_{1}+3 y_{2}\end{array}$
c) $\begin{aligned} & y_{1}^{\prime}=y_{1}+4 y_{2}+3 \\ & y_{2}^{\prime}=y_{1}-2 y_{2}-3\end{aligned}$

Problem 2.

Solve the systems of differential equations:
а) $\mathbf{y}^{\prime}=\left(\begin{array}{ccc}-5 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & -5\end{array}\right) \cdot \mathbf{y}, \quad \mathbf{y}(0)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
b) $\mathbf{y}^{\prime}=\left(\begin{array}{ccc}2 & 1 & 1 \\ -1 & 2 & 0 \\ 3 & -1 & 1\end{array}\right) \cdot \mathbf{y}, \quad \mathbf{y}(0)=\left(\begin{array}{c}-1 \\ -3 \\ 8\end{array}\right)$

Problem 3.

Rewrite the differential equation $y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}-6 y=0$ as a system of first order linear differential equations, and solve the system of differential equations.

Problem 4.

Let $y(t)=3 e^{-2 t}-5 e^{t}+12 e^{-3 t}$.
a) Find a linear second order differential equation that has y as a particular solution.
b) Find a linear third order differential equation that has y as a particular solution.
c) Find a 3×3 matrix A such that $\mathbf{y}^{\prime}=A \mathbf{y}$ has $\mathbf{y}=\left(y, y^{\prime}, y^{\prime \prime}\right)$ as a particular solution.

Problem 5.

Find the equilibrium states and determine their stability:
a) $y^{\prime \prime}+7 y^{\prime}+10 y=5$
b) $y^{\prime \prime}+y^{\prime}-20 y=1$
c) $y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}-6 y=12$
d) $\mathbf{y}^{\prime}=\left(\begin{array}{cc}1 & 4 \\ 1 & -2\end{array}\right) \mathbf{y}+\binom{3}{-3}$
e) $\mathbf{y}^{\prime}=\left(\begin{array}{ccc}-5 & 0 & 1 \\ 0 & -3 & 0 \\ 1 & 0 & -5\end{array}\right) \cdot \mathbf{y}$

Exercise Problems

Problems from the textbook
Final exam problems
[E] 9.1-9.7
11/2018 Q2,Q5, 01/2019 Q2, 01/2020 Q3, 03/2021 Q3bc

Answers to Key Problems

Problem 1.

a) $\mathbf{y}^{\prime}=\left(\begin{array}{ll}2 & 5 \\ 5 & 2\end{array}\right) \mathbf{y}, \quad \mathbf{y}=C_{1}\binom{1}{1} e^{7 t}+C_{2}\binom{-1}{1} e^{-3 t}$
b) $\mathbf{y}^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 4 & 3\end{array}\right) \mathbf{y}, \quad \mathbf{y}=C_{1}\binom{1}{4} e^{4 t}+C_{2}\binom{-1}{1} e^{-t}$
c) $\mathbf{y}^{\prime}=\left(\begin{array}{cc}1 & 4 \\ 1 & -2\end{array}\right) \mathbf{y}+\binom{3}{-3}, \quad \mathbf{y}=C_{1}\binom{4}{1} e^{2 t}+C_{2}\binom{-1}{1} e^{-3 t}+\binom{1}{-1}$

Problem 2.

a) $\mathbf{y}=\frac{1}{2}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \cdot e^{-4 t}-\frac{1}{2}\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right) \cdot e^{-6 t}$
b) $\mathbf{y}=\left(\begin{array}{c}-2 \\ -1 \\ 5\end{array}\right)+\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right) e^{2 t}+\left(\begin{array}{c}1 \\ -1 \\ 2\end{array}\right) e^{3 t}$

Problem 3.

$$
\mathbf{y}^{\prime}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -1 & -4
\end{array}\right) \mathbf{y}, \quad \mathbf{y}=\left(\begin{array}{c}
y \\
y^{\prime} \\
y^{\prime \prime}
\end{array}\right)=C_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{t}+C_{2}\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) e^{-2 t}+C_{3}\left(\begin{array}{c}
1 \\
-3 \\
9
\end{array}\right) e^{-3 t}
$$

Problem 4.

More than one solution is possible:
a) $y^{\prime \prime}+y^{\prime}-2 y=48 e^{-3 t}$
b) $y^{\prime \prime \prime}+4 y^{\prime \prime}+y^{\prime}-6 y=0$
c) $A=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -1 & -4\end{array}\right)$

Problem 5.

a) $\mathbf{y}_{e}=1 / 2$ is globally asymptotically stable
b) $\mathbf{y}_{e}=-1 / 20$ is unstable
c) $\mathbf{y}_{e}=-2$ is unstable
d) $\mathbf{y}_{e}=(1,-1)$ is unstable
e) $\mathbf{y}_{e}=(0,0,0)$ is globally asymptotically stable

