Key Problems

Problem 1.

We consider the vectors $\mathbf{v}_{1}=(1,3,4), \mathbf{v}_{2}=(-1,3,4), \mathbf{v}_{3}=(5,3,4), \mathbf{v}_{4}=(6,4,5), \mathbf{v}_{5}=(4,2,3)$.
a) Is \mathbf{v}_{3} in $\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$?
b) Express \mathbf{v}_{5} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ if possible.
c) Are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}$ linearly independent vectors?
d) Are $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{5}$ linearly independent vectors?
e) Determine the dimension of $V=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right)$, and find a base of V.
f) Express \mathbf{v}_{5} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ in a different way than in (b), if possible.

Problem 2.

Find a parametric description of the line through the points $(1,2,1)$ and $(4,5,3)$ in \mathbb{R}^{3}. Determine the intersection points (x, y, z) of this line and the plane $x-y+z=6$.

Problem 3.

Determine $\operatorname{dim} V$ and $\operatorname{dim} W$ when $V=\operatorname{Col}(A), W=\operatorname{Null}(A)$, and A is the 3×5 matrix A given below, and find a base of V and W :

$$
A=\left(\begin{array}{ccccc}
1 & -1 & 5 & 6 & 4 \\
2 & 4 & -2 & -2 & -2 \\
3 & 5 & -1 & -1 & -1
\end{array}\right)
$$

Problem 4.

Let A be a 8×8 matrix with rank given by $\operatorname{rk}(A)=7$ and let \mathbf{b} be a vector in \mathbb{R}^{8}. Determine:
a) $\operatorname{dim} \operatorname{Null}(A)$ and $\operatorname{dim} \operatorname{Col}(A)$
b) The number of solutions of $A \mathbf{x}=\mathbf{0}$
c) The number of solutions of $A \mathbf{x}=\mathbf{b}$
d) The number of solutions of $A \mathbf{x}=\mathbf{0}$ that satisfies $x_{1}+x_{2}+\cdots+x_{8}=1$

Exercise problems

Problems from the textbook: Exam problems:
[E] 2.1-2.16
[Midterm 10/2019] Question 1, 2, 8
[Midterm 10/2022] Question 1, 2, 7

Answers to Key Problems

Problem 1.

a) Yes
b) $\mathbf{v}_{5}=6 \mathbf{v}_{1}-4 \mathbf{v}_{2}-\mathbf{v}_{4}$
c) Yes
d) Yes
e) $\operatorname{dim} V=3$, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a base of V
f) $\mathbf{v}_{5}=2 \mathbf{v}_{3}-\mathbf{v}_{4}$

Problem 2.

Parametric description: $(x, y, z)=(1+3 t, 2+3 t, 1+2 t)$. Intersection point: $(x, y, z)=(10,11,7)$.

Problem 3.

a) $\operatorname{dim} V=3$, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$ is a base of V when \mathbf{v}_{i} is the i 'th column vectors of A
b) $\operatorname{dim} W=2$, and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is a base for W when $\mathbf{w}_{1}=(-3,2,1,0,0), \mathbf{w}_{2}=(-6,4,0,1,1)$

Problem 4.

a) $\operatorname{dim} \operatorname{Null}(A)=1$ and $\operatorname{dim} \operatorname{Col}(A)=7$
b) Infinitely many solutions (one degree of freedom)
c) Infinitely many solutions (one degree of freedom) if \mathbf{b} is a linear combination of the columns of A, otherwise no solutions
d) No solutions if $(1,1, \ldots, 1)$ is a linear combination of the rows of A, otherwise one unique solution.

