Key Problems

Problem 1.

We consider the vectors $\mathbf{v}_1 = (1,3,4)$, $\mathbf{v}_2 = (-1,3,4)$, $\mathbf{v}_3 = (5,3,4)$, $\mathbf{v}_4 = (6,4,5)$, $\mathbf{v}_5 = (4,2,3)$.

- a) Is \mathbf{v}_3 in span $(\mathbf{v}_1, \mathbf{v}_2)$?
- b) Express \mathbf{v}_5 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ if possible.
- c) Are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4$ linearly independent vectors?
- d) Are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_5$ linearly independent vectors?
- e) Determine the dimension of $V = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$, and find a base of V.
- f) Express \mathbf{v}_5 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ in a different way than in (b), if possible.

Problem 2.

Find a parametric description of the line through the points (1,2,1) and (4,5,3) in \mathbb{R}^3 . Determine the intersection points (x,y,z) of this line and the plane x - y + z = 6.

Problem 3.

Determine dim V and dim W when V = Col(A), W = Null(A), and A is the 3×5 matrix A given below, and find a base of V and W:

$$A = \begin{pmatrix} 1 & -1 & 5 & 6 & 4 \\ 2 & 4 & -2 & -2 & -2 \\ 3 & 5 & -1 & -1 & -1 \end{pmatrix}$$

Problem 4.

Let A be a 8×8 matrix with rank given by rk(A) = 7 and let **b** be a vector in \mathbb{R}^8 . Determine:

- a) dim Null(A) and dim Col(A)
- b) The number of solutions of $A\mathbf{x} = \mathbf{0}$
- c) The number of solutions of $A\mathbf{x} = \mathbf{b}$
- d) The number of solutions of $A\mathbf{x} = \mathbf{0}$ that satisfies $x_1 + x_2 + \cdots + x_8 = 1$

Exercise problems

Problems from the textbook:	[E] 2.1 - 2.16
Exam problems:	[Midterm $10/2019$] Question 1, 2, 8
	[Midterm $10/2022$] Question 1, 2, 7

Answers to Key Problems

Problem 1.

a) Yes	b) $\mathbf{v}_5 = 6\mathbf{v}_1 - 4\mathbf{v}_2 - \mathbf{v}_4$
c) Yes	d) Yes
e) dim $V = 3$, and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a base of V	f) $\mathbf{v}_5 = 2\mathbf{v}_3 - \mathbf{v}_4$

Problem 2.

Parametric description: (x,y,z) = (1 + 3t, 2 + 3t, 1 + 2t). Intersection point: (x,y,z) = (10,11,7).

Problem 3.

- a) dim V = 3, and $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a base of V when \mathbf{v}_i is the *i*'th column vectors of A
- b) dim W = 2, and $\{\mathbf{w}_1, \mathbf{w}_2\}$ is a base for W when $\mathbf{w}_1 = (-3, 2, 1, 0, 0), \mathbf{w}_2 = (-6, 4, 0, 1, 1)$

Problem 4.

- a) dim Null(A) = 1 and dim Col(A) = 7
- b) Infinitely many solutions (one degree of freedom)
- c) Infinitely many solutions (one degree of freedom) if \mathbf{b} is a linear combination of the columns of A, otherwise no solutions
- d) No solutions if $(1,1,\ldots,1)$ is a linear combination of the rows of A, otherwise one unique solution.