Key Problems

Problem 1.

Find all eigenvalues of A, and a base for the eigenspace E_{λ} for each eigenvalue λ :

a)
$$A = \begin{pmatrix} 5 & 9 \\ 9 & 5 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 3 & -4 \\ 3 & 0 \end{pmatrix}$$

d)
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$

e)
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

$$f) \ \ A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Problem 2.

For the matrix A in Problem 1 a) - f), determine whether A is diagonalizable, and find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$ when this is possible.

Problem 3.

Find the eigenvalues of A, and show that A is diagonalizable:

$$A = \begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 2 & 3 & 0 \\ 0 & 3 & 2 & 0 \\ 4 & 0 & 0 & 1 \end{pmatrix}$$

Problem 4.

Use eigenvalues and eigenvectors of A to determine the limit of A^m when $m \to \infty$.

a)
$$A = \begin{pmatrix} 0.40 & 0.15 \\ 0.60 & 0.85 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 0.77 & 0.46 \\ 0.23 & 0.54 \end{pmatrix}$$

Problem 5.

Show that when A is a 3×3 matrix, then the characteristic equation of A can be written as $-\lambda^3+c_1\lambda^2-c_2\lambda+c_3=0$, where $c_1=\operatorname{tr}(A)$, $c_2=M_{12,12}+M_{23,23}+M_{13,13}$ and $c_3=\det(A)$. Hint: Write down the characteristic equation of a 3×3 matrix $A=(a_{ij})$ with general coefficients. Then use the formula to find the characteristic equation and the eigenvalues of the following matrices:

a)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 4 & 0 \\ 3 & 5 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 0 & 4 & 7 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix}$$

Exercise Problems

Problems from the textbook:

[E] 4.1 - 4.7

Exam problems:

[Midterm 10/2018] Question 1-6 [Midterm 10/2022] Question 3,6,8

Answers to Key Problems

Problem 1.

- a. Eigenvalues $\lambda_1 = -4$, $\lambda_2 = 14$ and eigenvectors $E_{-4} = \operatorname{span}(\mathbf{v}_1)$ and $E_{14} = \operatorname{span}(\mathbf{v}_2)$, where $\mathbf{v}_1 = (-1,1)$ and $\mathbf{v}_2 = (1,1)$.
- b. Eigenvalues $\lambda_1 = \lambda_2 = 3$ and eigenvectors $E_3 = \text{span}(\mathbf{v}_1)$, where $\mathbf{v}_1 = (1,1)$.
- c. No eigenvalues or eigenvectors.
- d. Eigenvalues $\lambda_1 = \lambda_2 = 4$, $\lambda_3 = 2$ and eigenvectors $E_4 = \operatorname{span}(\mathbf{v}_1, \mathbf{v}_2)$ and $E_2 = \operatorname{span}(\mathbf{v}_3)$, where $\mathbf{v}_1 = (0,1,0)$, $\mathbf{v}_2 = (1,0,1)$, and $\mathbf{v}_3 = (-1,0,1)$.
- e. Eigenvalues $\lambda_1 = \lambda_2 = -1$, $\lambda_3 = 2$ and eigenvectors $E_{-1} = \text{span}(\mathbf{v}_1, \mathbf{v}_2)$ and $E_2 = \text{span}(\mathbf{v}_3)$, where $\mathbf{v}_1 = (-1,1,0)$, $\mathbf{v}_2 = (-1,0,1)$, and $\mathbf{v}_3 = (1,1,1)$.
- f. Eigenvalues $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and eigenvectors $E_0 = \operatorname{span}(\mathbf{v}_1)$, where $\mathbf{v}_1 = (1,0,0)$.

Problem 2.

a) Yes, with
$$P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} -4 & 0 \\ 0 & 14 \end{pmatrix}$ b) No

c) No d) Yes, with
$$P = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

e) Yes, with
$$P = \begin{pmatrix} -1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ f) No

Problem 3.

The eigenvalues of A are $\lambda_1 = \lambda_2 = 5$, $\lambda_3 = -1$ and $\lambda_4 = -3$.

Problem 4.

a)
$$A^m \to \begin{pmatrix} 1/5 & 1/5 \\ 4/5 & 4/5 \end{pmatrix}$$
 as $m \to \infty$ b) $A^m \to \begin{pmatrix} 2/3 & 2/3 \\ 1/3 & 1/3 \end{pmatrix}$ as $m \to \infty$

Problem 5.

a)
$$-\lambda^3 + 6\lambda^2 - 4\lambda = 0$$
, $\lambda = 0$ or $\lambda = 3 \pm \sqrt{5}$

b)
$$-\lambda^3 + 9\lambda^2 - 18\lambda + 8 = 0$$
, $\lambda = 2$ or $\lambda = (7 \pm \sqrt{33})/2$

c)
$$-\lambda^3 = 0$$
, $\lambda = 0$ (multiplicity 3)