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QUESTION 1.

(a) We compute the determinant of A using cofactor expansion along the first column, and find

that

t 1 1

det(A) =1t 2 1|=td—-t)—t2—-t)+4-(-1)=2t—4

4 t 2

Since det(A) # 0 for ¢ # 2, and the minor |} 1| = —1 of order two is non-zero, we have that
- {3 173
(b) When t = —2, the characteristic equation of A is given by
2 1 1
det(A—A)=| —2 2-x 1 [=0
4 2 2.

Cofactor expansion along the first column gives
(=2=M(2=X242) = (=2)2-A+2)+4(1—-(2-X) =0
and we find that this reduces to
(=2=N)2-N2+2(-2-N)+2(4 - +4A—-1) = (2= N)(2-N?=0

The eigenvalues are therefore A = —2 and A\ = 2, where the last eigenvalue has multiplicity
two. When X\ = 2, the eigenvectors are given by (A — 2I)x = 0, and the matrix

-4 1 1
A=2I=1-2 0 1
4 =20

has rank two since A — 21 has a non-zero minor |} 1| =1 of order two — it cannot have rank
three since A = 2 is an eigenvalue. Therefore, the linear system has just one free variable while
A = 2 is an eigenvalue of multiplicity two. So A is not diagonalizable when t = —2.



(a)

QUESTION 2.

We compute the partial derivatives and the Hessian matrix of f:

f! —423 — 2hx + 62 —1222 -2h 0 6
£l = —6y . = 0 -6 0
1l 6x — 122 6 0 -12
We see that the leading principal minors are given by D; = —122% — 2h, Dy = —6D; and

D3 = —6(14422 + 24h — 36). Hence D; < 0 for all (x,y, 2) if and only if h > 0, and if this is
the case then Dy = —6D; > 0. Moreover, D3 < 0 for all (z,y, z) if and only if » > 3/2. This
means that D1 < 0, Dy > 0, D3 < 0 if and only if A > 3/2, and the equalities are strict if
h > 3/2. If h = 3/2, then D3 = 0, and we compute the remaining principal minors. We find
that A; = —6,—12 < 0 and that Ay = 14422,72 > 0. We conclude that f is concave if and
only if h > 3/2, and H = 3/2.

We compute the stationary points, which are given by the equations

—4x3 —2hx +62=0, —6y=0, 6x—122=0
The last two equations give y = 0 and z = x/2, and the first equations becomes
—42® —2hx + 3z =z(—42* +3-2h) =0 & 2=0

since 22 = (3 — 2h)/4 has no solutions when h > 3/2 and the solution x = 0 when h = 3/2.
The stationary points are therefore given by (x*(h),y*(h),z*(h)) = (0,0,0) when h > 3/2,
and this is the global maximum since f is concave.

Let h > 3/2. By the Envelope Theorem, we have that

of

=2h >3
(‘3h(,y,) (0,0,0) -

ff() = (=2 +2h)|

(2,y,2)=(0,0,0)
Since the derivative is positive, the maximal value will increase when h increases. We could
also compute f*(h) = £(0,0,0) = 12+ h? explicitly for h > 3/2, and use this to see that f*(h)
increases when h increases.

QUESTION 3.

The homogeneous equation y” — 5y’ + 6y = 0 has characteristic equation 72 — 5r 4+ 6 = 0, and
therefore roots r = 2,3. Hence the homogeneous solution is yy,(t) = C1e?* 4 Cye'. To find
a particular solution of 3" — 5y’ + 6y = 10e~t, we try y = Ae~'. This gives v/ = —Ae~! and

" = Ae~!, and substitution in the equation gives (A + 54 + 6A)e™ " = 10e~, or 124 = 10.
Hence A = 5/6 is a solution, and y,(t) = ge_t is a particular solution. This gives general
solution

5
y(t) = Cre?t 4+ Cae® + Ee*t

The differential equation 4te?'y — (1 — 2t)e?'y’ = 0 is exact if and only if there is a function

h(t,y) such that

Oh

— =4te?ty, — = —(1—2t)e*
ot oy ( )

We see that h(t,y) = —(1—2t)e?y is a solution to the last equation, and differentiation shows
that it is a solution to the first equation as well. Therefore the solution of the exact differential
equation is given by

Cef2t
2t —

hty)=—(1-20)"y=C = y= (when t > 1/2)



QUESTION 4.

(a) The homogeneous equation p;r2 — 2pi11 + p = 0 has characteristic equation r2 — 2r +1 = 0,
with double root r = 1. Therefore, the homogeneous solution is pf} = (C1 + Cat)1t = C1 + COat.
To find a particular solution, we first try p, = A, which gives 0 = —15 and there is no solution
for A. We then try p, = At, and get A(t + 2) — 2A(t + 1) + At = —15, or 0 = —15, and there
is again no solution for A. We try p; = At?, and get A(t + 2)% — 2A(t +1)? + At?> = —15, or
2A = —15. The solution is A = —7.5, and we get p; = C 4+ Cot — 7.5t%. The initial conditions
give C1 = 695 and 695+ Cy — 7.5 = 743, or Co = 55.5. The solution of the difference equation
is therefore p;, = 695 + 55.5t — 7.5t2. Alternatively, the difference equation can be solved
using the difference dy = py11 — pr. With this method, we first find d; (see below), and then
solve the first order difference equation p;11 — pr = d; when d; is known.

(b) Let di = pi+1 — pr be the increase in the housing prices p; from year ¢ to t + 1. Then we can
rewrite the difference equation as

diy1 — di = (Pi42 — Pes1) — (Pe+1 — Pt) = Div2 — 2pi41 +pr = —15

This result can also be obtained from the expression for p; found above. We can use this
to determine d;, since we have a first order difference equation d;+; — d; = —15, with initial
condition dy = p; —po = 48. We get homogeneous solution df = C'1* = C. To find a particular
solution, we first try dy = A. Since this gives 0 = —15, we try d; = At, and get A = —15.
So the general solution is d; = C — 15¢, and the initial condition dy = 48 gives C' = 48.
Alternatively, we can see directly that the solution for d; is given by d; = 48 — 15¢, since d; is
an arithmetic sequence. We conclude that d; > 0 for ¢ = 0,1,2,3 and that d; < 0 for ¢ > 4.
This means that the housing prices increases in the first 4 years (from ¢t = 0 to t = 4) and
decreases after that (from t = 4).

QUESTION 5.

For the sketch, see the figure below. Since In(ab) = In(a) + In(b), we can rewrite the function as

X
f(z,y) =2Inz+Iny — x — y and the constraints as —x —y < —4, —x < —1, —y < —1. We write the
Lagrangian for this problem as
L=2mmzr+hy—z—y—AN-z—y)—vi(-z)—1r(-y)
=2lnzr+Iny—z—y+ ANz +y)+riz+wry

The Kuhn-Tucker conditions for this problem are the first order conditions

2
1
Y

the constraints x +y > 4 and x,y > 1, and the complementary slackness conditions A, vq,15 > 0 and
Me+y—4)=0, v(z—-1)=0, wmy—1)=0

Let us find all solutions of the Kuhn-Tucker conditions: If z = 1, then 1 4+ X\ + v; = 0 by the first

FOC and this is not possible (since A,v; > 0). So we must have x > 1 and v; = 0. If y = 1, then

A+ v5 = 0 by the second FOC, and this implies that A = v, = 0 (since A\, > 0). Then the first
3



FOC implies that x = 2, and this is not possible since « +y > 4. Hence we must also have y > 1 and
vo = 0. Using the FOC’s, we get

2 1

A=1-2=1--

z Y
which gives 2/z = 1/y or x =2y and A =1—1/y > 0 since y > 1. This implies that z +y = 4, which
gives 3y =4 or y =4/3, x = 8/3 and A = 1/4. We conclude that there is exactly one solution of the
Kuhn-Tucker conditions:

(JZ‘, Y; Aa vy, VQ) = (8/37 4/37 1/47 07 O)

The Lagrangian £ = L(x,y;1/4,0,0) =2Inx +Iny — x — y + (x + y)/4 has Hessian

2
L — —zz 0
0o -1
y2
so L is a concave function, since D; = —2/2% < 0 and Dy = 2/(2%y?) > 0 (L is only defined for

x,y # 0). Therefore (x,y) = (8/3,4/3) is the maximum point.
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