

Written examination:	GRA 60353	Mathematics	
Examination date:	13.12.2013	09:00 - 12:00	Total no. of pages: 2
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS		
support material:	INSTRUMENTS BA II Plus		
Answer sheets:	Squares		
	Counts 80%	of GRA 6035	The subquestions have equal weight
Ordinary exam			Responsible department: Economics

All subquestions have the same weight and give maximal score 6p each. Answers to the first 12 subquestions give a maximal score of 72p (100%). Question 4(d) can be skipped, but gives 6p extra credit if answered correctly.

QUESTION 1.

Let f be the function given by f(x, y, z, w) = xw - yz.

- (a) (6p) Compute the partial derivatives and the Hessian matrix of f.
- (b) (6p) Find all stationary points of f, and classify them as local max, local min or saddle points.
- (c) (6p) Does f have a global maximum? Justify your answer.

QUESTION 2.

We consider the matrix A given by

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- (a) (6p) Compute the rank of A + I and A I, where I is the identity matrix.
- (b) (6p) Is A diagonalizable? Justify your answer.
- (c) (6p) Find all eigenvectors of A with eigenvalue $\lambda = -1$.

QUESTION 3.

Solve the difference equation:

(a) **(6p)** $y_{t+2} - 11y_{t+1} + 28y_t = 36t + 18$

Solve the differential equations:

(b) **(6p)**
$$y' = 4y + te^t$$

(c) **(6p)** $\frac{y}{y^2 + t^2 + 3} y' + \frac{t}{y^2 + t^2 + 3} = 0$, with initial condition $y(1) = 2$

QUESTION 4.

We consider the following Kuhn-Tucker problem:

max
$$f(x, y, z, w) = xw - yz$$
 subject to
$$\begin{cases} x^2 + y^2 \le 1\\ 4z^2 + 9w^2 \le 36 \end{cases}$$

- (a) (6p) Write down the Kuhn-Tucker conditions. Show that there is a solution of these conditions with (x, y, z, w) = (0, 1, -3, 0), and find the corresponding multipliers.
- (b) (6p) Show that (x, y, z, w) = (0, 1, -3, 0) solves the Kuhn-Tucker problem.
- (c) (6p) Estimate the maximum value in the Kuhn-Tucker problem we obtain when we replace the second constraint with $4.2z^2 + 9w^2 \le 36$.
- (d) Extra credits (6p) Find all five solutions of the Kuhn-Tucker conditions in a).