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Question 1.

(a) Gaussian elimination of A and A+ I to echelon form gives

A =


0 1 1

1 0 1

1 1 0

 →


1 1 0

0 1 1

0 0 2

 and A+ I =


1 1 1

1 1 1

1 1 1

 →


1 1 1

0 0 0

0 0 0


Therefore, we have rkA = 3 and rk(A+ I) = 1.

(b) The characteristic equation for A is given by∣∣∣∣∣∣∣∣∣
−λ 1 1

1 −λ 1

1 1 −λ

∣∣∣∣∣∣∣∣∣ = −λ(λ2 − 1)− 1(−λ− 1) + 1(1 + λ) = (λ+ 1)(−λ(λ− 1) + 2) = 0

Therefore, the eigenvalues of A are given by λ = −1 and −λ2+λ+2 = 0, and the last equation
gives

λ =
−1±

√
9

−2
=
−1± 3

−2
= 2,−1

The conclusion is that the eigenvalues are λ1 = λ2 = −1 and λ3 = 2.
Alternative: It is possible to see that λ = −1 is an eigenvalue of multiplicity 2 from the fact
that rk(A + I) = 1, and since the sum of the eigenvalues is (−1) + (−1) + λ = tr(A) = 0 we
can conclude that the last eigenvalue is λ = 2. We could also have used that the product of
the eigenvalues is (−1)(−1)λ = detA = 2 to find that λ = 2.

(c) The matrix A is symmetric, therefore it is diagonalizable.
Alternative: Since λ = −1 has multiplicity two while λ = 2 has multiplicity one, we check
that the number of degrees of freedom of the linear system (A− λI)x = 0 for λ = −1: It has
two degrees of freedom, since rk(A + I) = 1 and n− rk(A + I) = 3− 1 = 2. Therefore there
are enough eigenvalues and enough eigenvectors, and A is diagonalizable.

Question 2.

(a) The partial derivatives of f(x, y, z, w) = x3 + 3xy2 − 3x− 2z3 + 6zw2 − 3w are given by

f ′x = 3x2 + 3y2 − 3, f ′y = 6xy, f ′z = −6z2 + 6w2, f ′w = 12zw − 3
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and its Hessian matrix is given by

H(f)(x, y, z, w) =


6x 6y 0 0

6y 6x 0 0

0 0 −12z 12w

0 0 12w 12z


(b) The stationary points of f are given by

f ′x = 3x2 + 3y2 − 3 = 0, f ′y = 6xy = 0, f ′z = −6z2 + 6w2 = 0, f ′w = 12zw − 3 = 0

From the first two equations, we get x2 + y2 = 1 and xy = 0, which gives (x, y) = (±1, 0)
or (x, y) = (0,±1). From the last two equations, we get z2 = w2 and zw = 1/4, which
gives z = ±w, and since zw = 1/4 > 0, it must be z = w. Finally, zw = z2 = 1/4 gives
z = w = ±1/2. The stationary points are therefore the eight points

(x, y, z, w) = (±1, 0, 1/2, 1/2), (±1, 0,−1/2,−1/2), (0,±1, 1/2, 1/2), (0,±1,−1/2,−1/2)

When (x, y) = (0,±1), the Hessian matrix is given by

H(f)(0,±1, z, w) =


0 ±6 0 0

±6 0 0 0

0 0 ∗ ∗

0 0 ∗ ∗


and has D2 = −36 < 0. The four stationary points with (x, y) = (0,±1) are therefore saddle
points. When (x, y) = (±1, 0) and (z, w) = (1/2, 1/2) or (−1/2,−1/2), we get

D4 =

∣∣∣∣∣∣∣∣∣∣∣∣

6x 0 0 0

0 6x 0 0

0 0 −12z 12w

0 0 12w 12z

∣∣∣∣∣∣∣∣∣∣∣∣
= 36x2(−144z2 − 144w2) < 0

since x2 = 1 and z2 = w2 = 1/4. The four stationary points with (x, y) = (±1, 0) are therefore
also saddle points. We conclude that all stationary points are saddle points.

(c) The function f is not concave. If it were concave, then D1 = f ′′xx ≥ 0 for all (x, y, z, w) but
this is not the case since f ′′xx = 6x. Another argument is that if f were concave, then all
stationary points would be (local and global) maximum points, but this is not the case.

Question 3.

(a) The difference equation yt+1 − 2yt = 3t is first order linear, and it has solution yt = yht + ypt .
The homogeneous equation yt+1 − 2yt = 0 has solution yht = C · 2t. To find a particular
solution ypt , we consider the right hand side ft = 3t and the shifted expressions ft+1 = 3t+ 3.
We guess that there is a solution of the form yt = At+B. Inserting this guess in the difference
equation, we obtain

(At+B +A)− 2(At+B) = 3t

or (−A)t + (A − B) = 3t. We see that A = B = −3 is a solution, so ypt = −3t − 3 and the
general solution is

yt = yht + ypt = C · 2t − 3t− 3

(b) The differential equation y′′ − 12y′ + 20y = 2tet is second order linear, and it has solution
y = yh + yp. The homogeneous equation y′′ − 12y′ + 20y = 0 has characteristic equation
given by r2 − 12r + 20 = 0, and has solutions r = 2, 10, so the homogeneous solution is
yh = C1e

2t +C2e
10t. To find a particular solution, we consider the right hand side f(t) = 2tet
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and its derivatives f ′ = (2t + 2)et and f ′′ = (2t + 4)et. We guess that there is a solution of
the form y = (At+B)et. Inserting this guess in the differential equation, we obtain

(At+B + 2A)et − 12(At+B +A)et + 20(At+B)et = 2tet

or (9At+ 9B− 10A)et = 2tet. We see that there is a solution with 9A = 2 and 9B− 10A = 0,
or A = 2/9 and B = 20/81. This means that yp = (2/9t + 20/81)et is a particular solution,
and that the general solution is

y = yh + yp = C1e
2t + C2e

10t +
18t+ 20

81
et

(c) The differential equation y′ + ln(t) y = ln(t) is first order linear, and it is in standard form

y′ + a(t)y = b(t) with a(t) = b(t) = ln t. It has integrating factor u = e
∫
a(t) dt, and∫

ln(t) dt = t ln(t)− t+ C

We therefore multiplity the differential equation with u = et ln t−t, and get

(y et ln t−t)′ = ln(t) et ln t−t ⇒ y et ln t−t =

∫
ln(t) et ln t−t dt = et ln t−t + C

We have solved the integral using the substitution v = t ln t− t which gives dv = ln t dt. This
implies that the solution of the differential equation is

y =
et ln t−t + C
et ln t−t = 1 + C e−t ln t+t

for t > 0.

Question 4.

(a) The Kuhn-Tucker problem is already in standard form, so we form the Lagrangian

L = x3 + y3 + z3 − 3xyz − λ(x3 + y3 + z3)

The first order conditions (FOC) are

L′x = 3x2 − 3yz − 3λx2 = 0

L′y = 3y2 − 3xz − 3λy2 = 0

L′z = 3z2 − 3xy − 3λz2 = 0

the constraint (C) is given by x3 + y3 + z3 ≤ 8, and the complementary slackness conditions
(CSC) are given by

λ ≥ 0 and λ(x3 + y3 + z3 − 8) = 0

When λ = 1, the FOC’s are given by yz = xz = xy = 0, which means that at least two of the
variables are zero, and the CSC means that x3 + y3 + z3 = 8. If y = z = 0, then x3 = 8 and
therefore x = 2, and the two other cases are similar. We find exactly three solutions to the
KT conditions when λ = 1,

(x, y, z) = (2, 0, 0), (0, 2, 0), (0, 0, 2)

and f = 8 at all three points.
(b) An admissible point is one where the constraint x3 + y3 + z3 ≤ 8 is satisfied. The NDCQ is

given by rk J(x, y, z) = 1 when x3 +y3 +z3 = 8 (constraint is binding), and there is no NDCQ
condition when x3 + y3 + z3 < 8 (constraint is non-binding). The matrix J(x, y, z) is given by
the partial derivatives of the constraint:

J(x, y, z) =
(

3x2 3y2 3z2
)

The only possibility for NDCQ to fail is if rk J = 0 and the constrating is binding. This will
not happen, since rk J = 0 only if 3x2 = 3y2 = 3z2 = 0, or if (x, y, z) = (0, 0, 0), and the
constraint is not binding at this point. Therefore, NDCQ is satisfied at all admissible points.
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(c) The set of admissible points (points that satisfy x3 + y3 + z3 ≤ 8) is not bounded, since the
points (x, y, z) = (a, 0, 0) satisfies the constraint as long as a3 ≤ 8, or a < 2, and this includes
all negative values of a.

(d) The Kuhn-Tucker problem does not have a solution. We prove this by finding admissible
points where the function value is arbitary large (goes towards infinity):
The point (x, y, z) = (2, b,−b) satisfy the constraint x3 + y3 + z3 ≤ 8 for any value of b, since
23 + b3 + (−b)3 = 23 = 8. In other words, the point (x, y, z) = (2, b,−b) is admissible for any
value of b. The function value is given by

f(2, b,−b) = 23 + b3 + (−b)3 − 3 · 2b(−b) = 8 + 6b2

Note that f(2, b,−b) = 8 + 6b2 → ∞ as b → ∞, and that (2, b,−b) is admissible also when b
is very large. This proves that the Kuhn-Tucker problem has no solution.
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