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QUESTION 1.

Gaussian elimination of A and A + [ to echelon form gives

01 1 110 11 1 11 1
A=1[1 0 1 - |0 11 and A+I=1]1 1 1 - |0 0 0
110 00 2 11 1 0 00

Therefore, we have rk A = 3 and rk(A +I) = 1.
The characteristic equation for A is given by

-1 1
1 XA 1= A2 =) =1(-A=D+10+N)=A+1)(=AA=1)4+2) =0
1 1 =X

Therefore, the eigenvalues of A are given by A = —1 and —A\>4+\+2 = 0, and the last equation
gives

~1+v9 —-1+3

A= =2-1
-2 -2 ’
The conclusion is that the eigenvalues are Ay = Ay = —1 and A3 = 2.
Alternative: It is possible to see that A = —1 is an eigenvalue of multiplicity 2 from the fact

that tk(A + I) = 1, and since the sum of the eigenvalues is (—1) + (—1) + A = tr(4) = 0 we
can conclude that the last eigenvalue is A = 2. We could also have used that the product of
the eigenvalues is (—1)(—1)\ = det A = 2 to find that A\ = 2.

The matrix A is symmetric, therefore it is diagonalizable.

Alternative: Since A = —1 has multiplicity two while A\ = 2 has multiplicity one, we check
that the number of degrees of freedom of the linear system (A — AI)x = 0 for A = —1: It has
two degrees of freedom, since rk(A+ I) =1 and n —rk(A + I) = 3 — 1 = 2. Therefore there
are enough eigenvalues and enough eigenvectors, and A is diagonalizable.

QUESTION 2.

The partial derivatives of f(z,y,z,w) = 2> + 3zy? — 3z — 223 + 62w? — 3w are given by
fr=32"+3y" =3, [y =6zy, fl=-62"+6w? [, =12zw—3

z
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and its Hessian matrix is given by

6x 6y 0 0

6y 6z 0 0
0 0 -—-12z 12w
0 0 12w 12z

H(f)(2,y,2,w) =

The stationary points of f are given by

fr=32"+3y"—3=0, f,=6ay=0, f.=-6"+6w’=0, f,=122w—3=0

From the first two equations, we get 2 + %> = 1 and xy = 0, which gives (z,y) = (£1,0)
or (z,y) = (0,41). From the last two equations, we get 22 = w? and 2w = 1/4, which
gives z = 4w, and since zw = 1/4 > 0, it must be z = w. Finally, zw = 22 = 1/4 gives
z = w = +1/2. The stationary points are therefore the eight points

(z,y,z,w) = (£1,0,1/2,1/2),(£1,0,—-1/2,-1/2),(0,+1,1/2,1/2),(0,£1,—-1/2,—-1/2)

When (z,y) = (0,+£1), the Hessian matrix is given by

0 £6 0 O

+6 0 0 O
H(f)(0,£1,z,w) =

0 0 * =*

0 0 % x*

and has Dy = —36 < 0. The four stationary points with (z,y) = (0, £1) are therefore saddle
points. When (z,y) = (£1,0) and (z,w) = (1/2,1/2) or (—1/2,—1/2), we get

6 O 0 0
0 6z 0 0
0 0 —-12z 12w
0 0 12w 12z

= 36x%(—1442% — 144w?) < 0

since 22 = 1 and 22 = w? = 1/4. The four stationary points with (z,y) = (£1,0) are therefore
also saddle points. We conclude that all stationary points are saddle points.

The function f is not concave. If it were concave, then Dy = f2 > 0 for all (z,y, 2z, w) but
this is not the case since f/, = 6z. Another argument is that if f were concave, then all
stationary points would be (local and global) maximum points, but this is not the case.

QUESTION 3.

The difference equation g1 — 2y; = 3t is first order linear, and it has solution y; = yf* + ur.
The homogeneous equation ;1 — 2y = 0 has solution 3 = C - 2!. To find a particular
solution ¢, we consider the right hand side f; = 3¢ and the shifted expressions fi+1 = 3t + 3.
We guess that there is a solution of the form y, = At+ B. Inserting this guess in the difference
equation, we obtain

(At + B+ A) — 2(At + B) = 3t
or (—A)t + (A — B) = 3t. We see that A = B = —3 is a solution, so y = —3t — 3 and the
general solution is

ye=yr+y =02 -3t-3
The differential equation y” — 123" 4+ 20y = 2te’ is second order linear, and it has solution
Yy = yn + yp. The homogeneous equation y” — 12y’ 4+ 20y = 0 has characteristic equation
given by r? — 12r + 20 = 0, and has solutions r = 2,10, so the homogeneous solution is

yn = Cre? + Cze!'%. To find a particular solution, we consider the right hand side f(t) = 2te!
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and its derivatives f' = (2t + 2)e! and f” = (2t + 4)e’. We guess that there is a solution of
the form y = (At + B)e!. Inserting this guess in the differential equation, we obtain
(At + B + 2A)e" — 12(At + B + A)e’ + 20(At + B)e' = 2te

or (9At +9B — 10A)e! = 2te’. We see that there is a solution with 94 = 2 and 9B — 104 = 0,
or A =2/9 and B = 20/81. This means that y, = (2/9t + 20/81)e' is a particular solution,
and that the general solution is
18t +20

ST
The differential equation 3’ + In(t) y = In(¢) is first order linear, and it is in standard form
Yy + a(t)y = b(t) with a(t) = b(t) = Int. It has integrating factor u = e/ 44t and

y=yn+yp=Cre® + Coe'” +

/ln(t) dt =tln(t) —t+C

We therefore multiplity the differential equation with u = e!™*~*

, and get
(y etlnt—t)/ _ ln(t) etlnt—t = yetlnt—t _ /ln(t) 6tlnt—t dt = etlnt—t +C

We have solved the integral using the substitution v = tInt — ¢ which gives dv = Intdt¢. This
implies that the solution of the differential equation is

tint—t
e +C —tIntit
y=—mic —1tCe
for t > 0.
QUESTION 4.

The Kuhn-Tucker problem is already in standard form, so we form the Lagrangian
L=a®+1°+ 2% —3ayz — M\ +° + 2°)

The first order conditions (FOC) are

Ll =32% - 3yz —3\2® =0

E'y =3y? — 32z — 3\ =0

L =322 —3zy —3)22=0
the constraint (C) is given by 3 4+ y3 + 23 < 8, and the complementary slackness conditions
(CSC) are given by

A>0 and A\(2® +¢y°+2°—8)=0

When A = 1, the FOC’s are given by yz = xz = xy = 0, which means that at least two of the
variables are zero, and the CSC means that 22 + 1% + 23 = 8. If y = z = 0, then 23 = 8 and
therefore z = 2, and the two other cases are similar. We find exactly three solutions to the
KT conditions when A =1,

(z,y,2) = (2,0,0), (0,2,0), (0,0,2)

and f = 8 at all three points.

An admissible point is one where the constraint a3 + 3% + 23 < 8 is satisfied. The NDCQ is
given by rk J(z,y, z) = 1 when 2 +12 + 23 = 8 (constraint is binding), and there is no NDCQ
condition when 22 + 3 + 23 < 8 (constraint is non-binding). The matrix .J(x,y, ) is given by
the partial derivatives of the constraint:

J(.%',y, Z) = (31’2 3y2 322)

The only possibility for NDCQ to fail is if rk J = 0 and the constrating is binding. This will

not happen, since rk.J = 0 only if 322 = 3y? = 322 = 0, or if (z,y,2) = (0,0,0), and the

constraint is not binding at this point. Therefore, NDCQ is satisfied at all admissible points.
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(d)

The set of admissible points (points that satisfy x> + y3 4+ 23 < 8) is not bounded, since the
points (z,y, z) = (a,0,0) satisfies the constraint as long as a® < 8, or a < 2, and this includes
all negative values of a.

The Kuhn-Tucker problem does not have a solution. We prove this by finding admissible
points where the function value is arbitary large (goes towards infinity):

The point (z,y,2) = (2,b, —b) satisfy the constraint 23 + y3 + 23 < 8 for any value of b, since
23 + b2 + (=b)3 = 23 = 8. In other words, the point (z,vy,2) = (2,b, —b) is admissible for any
value of b. The function value is given by

£(2,b,—b) = 2% + b® + (=b)® — 3 - 2b(—b) = 8 + 6b*

Note that f(2,b, —b) = 8 + 6b> — 00 as b — oo, and that (2,b, —b) is admissible also when b
is very large. This proves that the Kuhn-Tucker problem has no solution.
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