

Written examination:	GRA 60353	Mathematics	
Examination date:	12.05.2014	09:00 - 12:00	Total no. of pages: 2
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS		
support material:	INSTRUMENTS BA II Plus		
Answer sheets:	Squares		
	Counts 80%	of GRA 6035	The subquestions have equal weight
Re-take exam			Responsible department: Economics

All subquestions have the same weight and give maximal score 6p each. Answers to the first 12 subquestions give a maximal score of 72p (100%). Question 4(d) can be skipped, but gives 6p extra credit if answered correctly.

QUESTION 1.

We consider the matrix A given by

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- (a) (6p) Compute the ranks of A and of A + I, where I is the identity matrix.
- (b) (6p) Find the eigenvalues of A.
- (c) (6p) Is A diagonalizable? Justify your answer.

QUESTION 2.

Let f be the function given by $f(x, y, z, w) = x^3 + 3xy^2 - 3x - 2z^3 + 6zw^2 - 3w$.

- (a) (6p) Compute the partial derivatives and the Hessian matrix of f.
- (b) (6p) Find all stationary points of f, and classify them as local max, local min or saddle points.
- (c) (6p) Is f concave?

QUESTION 3.

Solve the difference equation:

(a) **(6p)** $y_{t+1} - 2y_t = 3t$

Solve the differential equations:

- (b) **(6p)** $y'' 12y' + 20y = 2te^t$
- (c) (6p) $y' + \ln(t) y = \ln(t)$ when t > 0

QUESTION 4.

We consider the following Kuhn-Tucker problem:

 $\max f(x, y, z) = x^{3} + y^{3} + z^{3} - 3xyz \text{ subject to } x^{3} + y^{3} + z^{3} \le 8$

- (a) (6p) Write down the Kuhn-Tucker conditions, and find all solutions of the Kuhn-Tucker conditions with $\lambda = 1$.
- (b) (6p) Show that the NDCQ is satisfied at all admissible points.
- (c) (6p) Is the set of admissible points bounded? Justify your answer.
- (d) **Extra credits (6p)** Determine if the Kuhn-Tucker problem has a solution or not, and find the solution if it exists.