
Solutions Final exam in GRA 6035 Mathematics
Date December 12th, 2014 at 0900 - 1200

Question 1.

(a) The partial derivatives of f(x, y, z) = x4 + y2 − xz + z4 are given by

f ′x = 4x3 − z, f ′y = 2y, f ′z = −x+ 4z3

and its Hessian matrix is given by

H(f)(x, y, z) =

12x2 0 −1
0 2 0
−1 0 12z2


(b) The stationary points of f are given by

f ′x = 4x3 − z = 0, f ′y = 2y = 0, f ′z = −x+ 4z3 = 0

and therefore y = 0, z = 4x3, and −x + 4(4x3)3 = −x + 256x9 = 0. The last equation gives
x = 0 or x8 = 1/256, that is x = ±1/2. From the equation z = 4x3, we see that x = 0
gives z = 0, x = 1/2 gives z = 1/2 and x = −1/2 gives z = −1/2. Therefore there are
three stationary points (x, y, z) = (0, 0, 0), (1/2, 0, 1/2), (−1/2, 0,−1/2). The Hessian matrix
at these points are the symmetric matrices

H(f)(0, 0, 0) =

 0 0 −1
0 2 0
−1 0 0

 , H(f)

(
±1

2
, 0,±1

2

)
=

 3 0 −1
0 2 0
−1 0 3


The point (0, 0, 0) is a saddle point since the corresponding Hessian matrix is indefinite; it has
a negative second order principal minor ∆2 = −1 (choose first and third row and column).
The points (1/2, 0, 1/2) and (−1/2, 0,−1/2) are local minimum points since the corresponding
Hessian matrix is positive definite; it has positive leading principal minors D1 = 3, D2 = 6
and D3 = 16.

(c) The function f is not convex; it if was, all stationary points would be minima, and this is
not the case since f has a saddle point. Alternatively, we can consider the leading principal
minors D1 = 12x2, D2 = 24x2, and D3 = 2(144x2z2 − 1). It is not true that D3 ≥ 0 for all
(x, y, z), since for instance D3(0, 0, 0) = −2, so f is not convex.

Question 2.

(a) The determinant of A can be developed along the first column:

det(A) =

∣∣∣∣∣∣
t 1 1
1 t 1
1 1 t

∣∣∣∣∣∣ = t(t2 − 1)− 1(t− 1) + 1(1− t) = t3 − 3t+ 2

We can also write det(A) = (t− 1)(t(t+ 1)− 2) = (t− 1)(t2 + t− 2) = (t− 1)2(t+ 2). When
λ = t− 1, then the matrix A− λI has an echelon form

A− λI =

1 1 1
1 1 1
1 1 1

 →

1 1 1
0 0 0
0 0 0


and therefore rk(A− λI) = 1.

(b) The matrix A is diagonalizable since it is symmetric. This holds for all t, and therefore also
for t = 8. Since rk(A − λI) = 1 for λ = t − 1, if follows that det(A − λI) = 0 and that
(A−λI)x = 0 has two degrees of freedom. Therefore, λ = t−1 is an eigenvalue of multiplicity
at least two, and the first two eigenvalues are λ1 = λ2 = t − 1. Since λ1 + λ2 + λ3 = 3t
(the trace of A), it follows that λ3 = 3t − 2(t − 1) = t + 2. When t = 8, the eigenvalues are
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λ1 = λ2 = t− 1 = 7 and λ3 = t+ 2 = 10.
Alternative. We can also find the eigenvalues by solving the characteristic equation:∣∣∣∣∣∣

8− λ 1 1
1 8− λ 1
1 1 8− λ

∣∣∣∣∣∣ = (8− λ)((8− λ)2 − 1)− 1(8− λ− 1) + 1(1− (8− λ))

Since 8− λ− 1 = 7− λ is a common factor, we can factorize this expression as

(7− λ)((8− λ)(8− λ+ 1)− 1− 1) = (7− λ)(λ2 − 17λ+ 70)

This implies that the eigenvalues are given by λ = 7, or λ2 − 17λ+ 70 = 0 which gives λ = 7
or λ = 10.

(c) If we let s be the share of cars returned to another location, then the share of cars returned to
the same location is 8s. Since 8s+ s+ s = 1, we get that s = 1/10, and the transition matrix
is given by

T =

0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8

 = 0.1

8 1 1
1 8 1
1 1 8

 = sA

with s = 1/10 and t = 8. We know from theory that λ = 1 is an eigenvalue of T (and the
dominant eigenvalue in the sense that all other eigenvalues are smaller), and that the long-run
equilibrium is the unique eigenvector for T with λ = 1 such that the components (x, y, z)
satisfy x+y+z = 1 (that is, the vector can be interpreted as shares of cars). The eigenvectors
with λ = 1 are given by the linear system−0.2 0.1 0.1

0.1 −0.2 0.1
0.1 0.1 −0.2

x = 0

We solve this linear system, for instance using Gaussian elimination, and find that x = y = z.
The only solution with x + y + z = 1 is x = y = z = 1/3. It follows that 1/3 of the cars will
end up at each location in the long run. Therefore, 40 cars will end up at the airport location.
Alternative. We can also find the eigenvalues of T as sλ where λ = 7, 7, 10 are the eigenvalues
of A, since T = sA. The eigenvalues of T are therefore 0.7, 0.7, 1.

Question 3.

(a) The difference equation yt+1 − 3yt = −5(2t + 1) is first order linear, and it has solution
yt = yht + ypt = C · 3t + ypt since the r = 3is the characteristic root of r − 3 = 0. To find a
particular solution ypt , we consider the right hand side ft = −10t−5 and the shifted expression
ft+1 = −10(t+ 1)− 5 = −10t− 15. We guess a solution yt = At+ B. Inserting this guess in
the difference equation, we obtain

(At+B +A)− 3(At+B) = −10t− 5

or (−2A)t+ (A− 2B) = −10t− 5. We see that A = 5 and B = 5 is a solution, so ypt = 5t+ 5
and the general solution is

yt = yht + ypt = C · 3t + 5t+ 5

(b) The differential equation t3y′ = y2 is separable and it can be written in the form

1

y2
y′ =

1

t3
⇔

∫
1

y2
dy =

∫
1

t3
dt

Integration gives −y−1 = −1/2 · t−2 + C, and therefore that

1

y
=

1

2t2
− C or y =

1
1
2t2
− C

=
2t2

1− 2Ct2
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(c) The differential equation (2yt − 1)y′ = (t + 1)et − y2 can be written in the form p + qy′ = 0
with

p = y2 − (t+ 1)et, q = 2yt− 1

We attempt to find an expression h = h(y, t) such that h′t = p and h′y = q. From the first

equation, we see that h = ty2 − tet + φ(y) since∫
(t+ 1)et dt = (t+ 1)et −

∫
1 · et dt = (t+ 1)et − et + C = tet + C

using integration by parts with u = (t + 1), v′ = et. Using that h = ty2 − tet + φ(y), the
second condition h′y = q becomes

h′y = 2yt+ φ′(y) = 2yt− 1

which is satisfied if φ′(y) = −1, or φ(y) = −y. This implies that the equation is exact and
that h = ty2 − tet − y satisfies h′t = p and h′y = q. The solution of the differential equation is
therefore

ty2 − tet − y = C ⇔ ty2 − y + (−tet − C) = 0

To find an explicit solution, we solve for y using the abc-formula:

y =
1±

√
1 + 4t(tet + C)

2t

Question 4.

(a) The Kuhn-Tucker problem is already in standard form, so we form the Lagrangian

L = x+ 4y + 2z + 5w − λ(2x2 + 2y2 + 2yz + 2z2 + 2w2)

The first order conditions (FOC) are

L′x = 1− 4λx = 0

L′y = 4− 2λ(2y + z) = 0

L′z = 2− 2λ(y + 2z) = 0

L′w = 5− 4λw = 0

the constraint (C) is given by 2x2 + 2y2 + 2yz + 2z2 + 2w2 ≤ 21, and the complementary
slackness conditions (CSC) are given by

λ ≥ 0 and λ(2x2 + 2y2 + 2yz + 2z2 + 2w2 − 21) = 0

From the FOC’s we see that λ 6= 0, and therefore λ > 0 and 2x2 + 2y2 + 2yz+ 2z2 + 2w2 = 21
by the CSC’s. The FOC’s give

x =
1

4λ
, 2y + z =

4

2λ
, y + 2z =

2

2λ
, w =

5

4λ

From the two middle equations, we get that 2y+ z = 2(y+ 2z), and this gives z = 4z, or that
z = 0. We can use this to solve for all variables in terms of λ:

x =
1

4λ
, y =

4

4λ
, z = 0, w =

5

4λ

We put these expressions into the constraint, and find that

2 · 12 + 2 · 42 + 2 · 52

(4λ)2
= 21 or

84

16λ2
=

21

4λ2
= 21

which gives λ2 = 1/4, or λ = 1/2 since λ > 0. Therefore there is only one solution of the
Kuhn-Tucker conditions:

x =
1

2
, y = 2, z = 0, w =

5

2
, λ =

1

2
with f(x, y, z, w) = 21
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(b) It follows from the SOC that (x, y, z, w) = (1/2, 2, 0, 5/2) solves the max problem if the function
L(x, y, z, w; 1/2) is concave in (x, y, z, w). We prove that this is the case: The function is given
by

L(x, y, z, w;
1

2
) = x+ 4y + 2z + 5w − 1

2
(2x2 + 2y2 + 2yz + 2z2 + 2w2)

Its Hessian matrix is given by

H =


−2 0 0 0
0 −2 −1 0
0 −1 −2 0
0 0 0 −2


The leading principal minors are D1 = −2, D2 = 4, D3 = −6 and D4 = 12. It follows that
the Hessian is negative definite, and therefore that L(x, y, z, w; 1/2) is concave. Hence the
candidate point (x, y, z, w) = (1/2, 2, 0, 5/2) is a maximum point by the SOC, with max value
f(1/2, 2, 0, 5/2) = 21.

(c) We consider the Kuhn-Tucker problem with parameters c, d given by

max f(x, y, z, w) = x+ cy + 2z + dw subject to 2x2 + 2y2 + 2yz + 2z2 + 2w2 ≤ 21

which we have solved for c = 4 and d = 5. It has Lagrangian

L = x+ cy + 2z + dw − λ(2x2 + 2y2 + 2yz + 2z2 + 2w2 − 21)

and therefore L′c = y and L′d = w. By the Envelope Theorem, the maximum value changes
with approximately

∆f = ∆c · L′c(x∗, y∗, z∗, w∗;λ∗) + ∆d · L′d(x∗, y∗, z∗, w∗;λ∗)

= (3.8− 4) · 2 + (5.4− 5) · 5/2 = −0.4 + 1.0 = 0.6

when c changes from c = 4 to c = 3.8 and d changes from 5 to 5.4, since y∗ = 2 and
w∗ = 5/2 when c = 4 and w = 5. The new maximum value is therefore approximately equal
to 21 + 0.6 = 21.6. (The exact value is 7

√
239/5 = 21.64 . . .).

Question 5.

Since the sum of the entries in each row, as well as in each column, is 1, it follows that

y =


1
1
1
...
1

 implies that T · y =
1

t+ n− 1


t 1 1 . . . 1
1 t 1 . . . 1
1 1 t . . . 1
...

...
...

. . .
...

1 1 1 . . . t

 ·


1
1
1
...
1

 =


1
1
1
...
1


so that Ty = y, or that y is an eigenvector with eigenvalue λ = 1. Since the Markov chain is regular,
we know from theory that there is an equilibrium state x that the system will approach as n→∞,

x = lim
n→∞

Tnx0

and this state is the unique eigenvector x with eigenvalue λ = 1 such that x1 + x2 + · · · + xn = 1.
Since y is an eigenvector with λ = 1, it follows that

x =
1

y1 + y2 + · · ·+ yn
· y =


1/n
1/n

...
1/n


is the long run equilibrium state.
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