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Question 1.

(a) The determinant of A is det(A) = s3, since it is an upper triangular matrix (the determinant
is the product of the diagonal entries). Hence, rkA = 3 when s 6= 0. When s = 0, we have
that

rkA = rk

0 0 0
0 0 0
0 0 0

 = 0

since A is an echelon form with no pivot positions. Hence we have

detA = s3, rkA =

{
3, s 6= 0

0, s = 0

(b) When s = 1, the eigenvalues of A are given by the characteristic equation∣∣∣∣∣∣
1− λ 1 1

0 1− λ 1
0 0 1− λ

∣∣∣∣∣∣ = (1− λ)3 = 0

Therefore, the only eigenvalues is λ = 1 (with multiplicity three). The eigenvectors of A with
λ = 1 are given by the linear system0 1 1

0 0 1
0 0 0

x = 0

The coefficient matrix is already an echelon form, so x is a free variable and y + z = 0 and
z = 0, which gives y = z = 0. Hence the eigenvectors are given by

x =

xy
z

 =

x0
0

 = x

1
0
0


(c) For any s, the eigenvalues of A are given by the characteristic equation∣∣∣∣∣∣

s− λ s s
0 s− λ s
0 0 s− λ

∣∣∣∣∣∣ = (s− λ)3 = 0

Therefore, the only eigenvalues is λ = s (with multiplicity three). The eigenvectors of A with
λ = s are given by the linear system0 s s

0 0 s
0 0 0

x = 0

If s 6= 0, then there is only one degree of freedom (x is free), and therefore A is not diagonaliz-
able. If s = 0, then there are three degrees of freedom, and A is diagonalizable (the eigenvalue
has multiplicity three). Therefore A is diagonalizable if and only if s = 0.

(d) Since T is the transition matrix in a Markov chain, we know that λ = 1 is an eigenvalue of T .
We compute the eigenvectors for λ = 1 by considering the linear system−0.30 0.30 0.50

0.20 −0.50 0.20
0.10 0.20 −0.70

x = 0

We compute an echelon form of the coeffficient matrix:−0.30 0.30 0.50
0.20 −0.50 0.20
0.10 0.20 −0.70

→
−3 3 5

2 −5 2
1 2 −7

→
1 2 −7

0 9 −16
0 −9 16

→
1 2 −7

0 9 −16
0 0 0


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There is one degree of freedom (z is free). The equation 9y − 16z = 0 gives y = 16z/9, and
the equation x+ 2y− 7z = 0 gives x = −2y+ 7z = −2(16z/9) + 7z = 31z/9. The eigenvectors
for λ = 1 are therefore

x =

xy
z

 =
z

9
·

31
16
9


We know that the long term equilibrium of the Markov chain is the unique eigenvector for
λ = 1 with x + y + z = 1 (a market share vector). The equation z/9(31 + 16 + 9) = 1 gives
56z/9 = 1, or z/9 = 1/56. Therefore the long term market shares of company A,B,C are given
by

x =

xy
z

 =
1

56

31
16
9

 =

31/56
16/56
9/56


or x ≈ 55.4% for company A, y ≈ 28.6% for company B, and z ≈ 16.1% for company C.

Question 2.

(a) The equation y′′ − 3y′ − 10y = t is second order linear, and has solution y = yh + yp. The
characteristic equation is r2−3r−10 = 0, with solutions r = 5 and r = −2, so the homogeneous
solution is yy = C1e

5t +C2e
−2t. We guess a particular solution yp = At+B and put this into

the equation y′′ − 3y′ − 10y = t:

0− 3A− 10(At+B) = t ⇔ −10At+ (−10B − 3A) = t

This gives −10A = 1 and −10B−3A = 0, or A = −1/10 and B = 3/100. The general solution
is therefore

y = yh + yp = C1e
5t + C2e

−2t − 1

10
t+

3

100
(b) The equation t2y′ + ty = ln t is linear, and can be written as y′ + (1/t)y = (ln t)/t2. It has

integrating factor eln t = t, and after multiplication with the integrating factor, we get

(yt)′ =
ln t

t
⇒ yt =

∫
ln t

t
dt =

∫
t−1 ln t dt

We can solve the integral using the substitution u = ln t, which gives∫
t−1 ln t dt =

∫
u du =

1

2
u2 + C =

1

2
(ln t)2 + C

(or alternatively, we can use integration by parts to solve the integral). We get that

yt =

∫
t−1 ln t dt =

1

2
(ln t)2 + C ⇒ y =

(ln t)2 + 2C

2t

(c) We rewrite the equation (ln t− 6ty)y′ = 3y2 − y/t as (ln t− 6ty)y′ + (y/t− 3y2) = 0, and try
to solve it as an exact equation. We try to find a function h = h(y, t) such that

h′y = ln t− 6ty, h′t = (y/t− 3y2)

The first equation gives h = y ln t − 3ty2 + C(t), and when we put the derivative h′t into the
second equation, we get

y

t
− 3y2 + C ′(t) =

y

t
− 3y2

Therefore, we see that C(t) = 0 gives a solution, and the equation is exact. The general
solution of the differential equation is

y ln t− 3ty2 = K

We see that this is a quadratic equation −3ty2 + ln(t)y−K = 0 in y, and solve it for y to find
an explicit solution:

y =
− ln t±

√
(ln t)2 − 12Kt

−6t
=

ln t

6t
±
√

(ln t)2 − 12Kt

6t
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Question 3.

(a) The partial derivatives of f are given by

f ′x =
2x

x2 + y2 + 1
− 2x, f ′y =

2y

x2 + y2 + 1
− 2y

and the stationary point are given by the equations f ′x = f ′y = 0, which gives

2x− 2x(x2 + y2 + 1)

x2 + y2 + 1
=
−2x(x2 + y2)

x2 + y2 + 1
= 0,

2y − 2y(x2 + y2 + 1)

x2 + y2 + 1
=
−2y(x2 + y2)

x2 + y2 + 1
= 0

or −2x(x2 + y2) = −2y(x2 + y2) = 0. Either x2 + y2 = 0, or −2x = −2y = 0. In either case,
the only solution is x = 0, y = 0. Hence (0, 0) is the unique stationary point of f .

(b) The second order partial derivative f ′′xx is given by

f ′′xx =
2(x2 + y2 + 1)− 2x(2x)

(x2 + y2 + 1)2
− 2 =

−2x2 + 2y2 + 2

(x2 + y2 + 1)2
− 2

so f ′′xx(1, 0) = −2. We compute f ′′xy and f ′′yy in the same way, and get

f ′′xy =
−4xy

(x2 + y2 + 1)2
, f ′′yy =

2x2 − 2y2 + 2

(x2 + y2 + 1)2
− 2

This gives f ′′xy(1, 0) = 0 and f ′′yy(1, 0) = −1. It follows that the Hessian matrix at (1, 0) is

H(f)(1, 0) =

(
−2 0
0 −1

)
This matrix is negative definite since D1 = −2 < 0 and D2 = 2 > 0.

(c) We know that f is concave if and only if the Hessian matrix H(f)(x, y) is negative semidefinite
for all points (x, y). It is possible that the Hessian matrix is negative definite at a particular
point, but indefinite or positive definite at other points. For instance, g(x, y) = x3 + y3 has
Hessian matrix

H(g) =

(
6x 0
0 6y

)
which is negative definite when x, y ≤ 0, positive definite when x, y ≥ 0, and indefinite when x
and y have opposite signs. Hence, based solely on the fact that H(f)(x, y) is negative definite
for a particular point (x, y) = (1, 0), we cannot conclude that f is concave.

Question 4.

(a) To write the Kuhn-Tucker problem in standard form, we change the constraint to −2xy ≤ −1,
and the Lagrangian is then

L = 2 ln(x2 + y2 + 1)− x2 − y2 + λ(2xy)

The first order conditions (FOC) are

L′x =
4x

x2 + y2 + 1
− 2x+ 2λy = 0

L′y =
4y

x2 + y2 + 1
− 2y + 2λx = 0

the constraint (C) is given by 2xy ≥ 1, and the complementary slackness conditions (CSC)
are given by

λ ≥ 0 and λ(−2xy + 1) = 0

To find solutions with λ = 0 and 2xy = 1 (binding constraint), we simplify the FOC’s using
λ = 0, and get

4x− 2x(x2 + y2 + 1) = 2x(1− x2 − y2) = 0

and

4y − 2y(x2 + y2 + 1) = 2y(1− x2 − y2) = 0
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Hence 1−x2−y2 = 0, since x, y 6= 0 because of the constraint 2xy = 1. Finally, x2+y2 = 1 and
2xy = 1 gives x2 + y2 = 2xy, or x2− 2xy+ y2 = 0. This equation can be written (x− y)2 = 0,
which means that x = y. The contraint then gives 2x2 = 1, or x2 = 1/2 and x = ±1/

√
2.

Therefore the solutions with λ = 0 and binding constraint are

(x, y;λ) = (
1√
2
,

1√
2

; 0), (− 1√
2
,− 1√

2
; 0)

(b) The admissible set is not bounded. For example, the point (x, y) = (a, 1/a) is admissible for
any a since 2xy = 2 ≥ 1. This means that there are admissible points with x arbitrary large,
so the set is unbounded. The NDCQ for the constraint g(x, y) = −2xy ≤ −1 is given by

rk
(
g′x g′y

)
= rk

(
−2y −2x

)
= 1

for the points with 2xy = 1, and there is no condition when 2xy > 1. To fail NDCQ, we must
have a point with 2xy = 1 and −2y = −2x = 0, and this is clearly not possible. Therefore, no
admissible points fail NDCQ.

(c) We must show that the problem has a maximum, and we cannot use the Extreme Value
Theorem (the set of admissible points is not bounded) or concavity (it is hard to check if the
function L(x, y; 0) is concave in (x, y) — it gives hard calculations, and it turns out that the
function is not concave). We try another approach: We consider the function f(x, y) at a level
curve x2 + y2 = c for c ≥ 0, where its value is

f(x, y) = 2 ln(x2 + y2 + 1)− (x2 + y2) = 2 ln(c+ 1)− c
All points on a given level curve x2 + y2 = c therefore have the same value f(x, y), and we
consider the function h(c) = 2 ln(c + 1) − c for c ≥ 0 which measures the value of f(x, y) on
this level curve. The derivative is

h′(c) = 2/(c+ 1)− 1 = (2− c− 1)/(c+ 1) = (1− c)/(1 + c)

Hence the derivative is positive for c < 1 and negative for c > 1, with h′(1) = 0. Therefore h(c)
has its maximal value for c = 1, and f has its maximal value on the level curve x2 + y2 = 1.
In other words, the unconstrained problem

max f(x, y) = 2 ln(x2 + y2 + 1)− x2 − y2

has global maximum for all points (x, y) with x2 + y2 = 1 (a circle of radius 1), where
f = 2 ln(2) − 1 ≈ 0.386. If there is an admissible point on this circle, it is therefore a global
constrained maximum point, or a solution of the Kuhn-Tucker problem. We consider the
conditions

2xy ≥ 1 and x2 + y2 = 1

If 2xy = 1 and x2 + y2 = 1, we get exactly the same solutions as in a). These solutions are
(1/
√

2, 1/
√

2) and (−1/
√

2,−1/
√

2). If 2xy > 1 and x2+y2 = 1, then we get x2+y2 = 1 < 2xy,
or x2 − 2xy + y2 < 0. This is not possible, since it gives (x− y)2 < 0. In conclusion, the two
points found in a) are on the level curve x2 + y2 = 1 and are therefore global maximum points
for the Kuhn-Tucker problem, with maximum value f = 2 ln 2− 1 ≈ 0.386.
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