(a)

Solutions Final exam in GRA 6035 Mathematics
Date December 11th, 2015 at 0900 - 1200

QUESTION 1.

The rank of A is two since it has an echelon form

0110 1 0 01
A 1 0 01 N 0110
{1 0 01 00 00
0110 00 00
The linear system Ax = 0 has free variables z,w and the solution is given by the equations
x4+ w =0 and y 4+ z = 0, which gives x = —w and y = —z, or
—w 0 -1
—z —1 0
X = . =z 4 + w 0
w 0 1
Since A is symmetric, it is diagonalizable. The eigenvalues are given by the characteristic
equation det(A — AI) = 0, which becomes
-2 1 1 0
1 -2 0 1] 0
1 0 —-Xx 1]
0 1 1 =X

This gives the equation
AN =D+ 1(N) = 11N = 1) = 1(=1) + 1(1(-1) —=1(A\> =1)) =0
which gives, after multiplication, that
MAZ 1D =X =22 =N -1-3) =X\ -4 =XN-2)A+2)=0

The eigenvalues are therefore A = 0 (with multiplicity two), A = 2 and A = —2 (both with
multiplicity one).

We know that there is an invertible matrix P such that P~'AP = D is diagonal, since
A is diagonalizable. Therefore D? = (P7!AP)(P7'AP) = P 'A%P, so B = A% is also
diagonalizable. We have that

000 0 000 0
looo o > o000
D=1g 0 2 o0 = D"=10 04 0

000 -2 000 4

The eigenvaluess of B = A% are therefore A = 0 (with multiplicity two) and A = 4 (with
multiplicity two). Alternatively, one could answer this question by computing

2.0 0 2
e o220
B=A"=149 2 20

2.0 0 2

Since B is symmetric, it is diagonalizable. We could find the eigenvalues of B by solving the
characteristic equation det(B —\I) = 0, which gives A>(A—4)? = 0, or A = 0 (with multiplicity
two) and A = 4 (with multiplicity two).
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(d)

We know that x;1 = T'x; is a regular Markov chain, since all entries in T are positive, so the
equilibrium state x is the unique eigenvalue of T' with eigenvalue A = 1 that is a state vector.
We compute the eigenvectors with eigenvalue A\ = 1:

—-0.45 0.10 0.15 —45 10 15 10 =20 5
0.10 -0.20 0.05 — 10 =20 5 — —45 10 15
0.35 010 -0.20 35 10 -20 35 10 -20
10 -20 ) 10 —-20 5

— 0 —-80 375 — 0 —-160 75

0 80 =375 0 0 0

We see that z is free, that y = 75z/160 and that 10z = 20(75z/160) — 5z = 35z/8, so
x = 352/80 = 70z/160. The unique eigenvector that is a state vector is given by

70z + 75z + 160z 305z

=1 = = =1
Try+e 160 160
which gives z = 160/305. This gives equilibrium state x with
70 14 75 15 160 32
=—=—=0.23 =—=—=0.25 =—=—=0.52
7305 61 Y7305 T 61 77305 61
QUESTION 2.

The differential equation 3" — 4y’ — 12y = 15¢! is second order linear, and has general solution
Yy = Yn + Yp. The homogeneous solution is

yp = Cre® + Cge™

since the characteristic equation r? — 4r — 12 = 0 has solutions r = 6 and r = —2. To find the
particular solution, we guess a solution of the form y = Aet, since f(t) = 15¢! = f/(t) = f"(¢).
We compute 3 =y’ = Ae!, which gives

Ael(1 —4—-12) =15¢" = —154¢' = 15¢
We see that A = —1 is a solution, so yp = —e! and the general solution is
y = C1e% + Coe™ — ¢t

The differential equation 3’ = 3v/% - e~% is separable, and it can be written in the form
ey =3t1? & /€2y dy = /3t1/2 dt
Integration gives e?¥/2 = 2 - t3/2 4 C, and therefore that
e =432 4 20 = 4t\/t +2C or y= %m (4t\/£+ 2C>

The differential equation 4yt + 4¢3 + 2t + (2y — 1 + 2t?)y’ = 0 can be written in the form
p+ qy =0 with
p=Adyt+4t3+2t, q=2y—1+ 2>
We attempt to find a function h = h(y, t) such that hi = p and hj, = ¢. From the first equation,
we see that h = 2yt% +t* + 2+ ¢(y), since (2yt? +t* +12 + ¢(y)); = 4yt + 43 + 2t = p. Using
this expression for h, the second condition becomes
hy =2t + ¢/ (y) = 2y — 1 4 2t

which is satisfied if ¢/(y) = 2y — 1, and one solution is ¢(y) = y> — y. This implies that
differential equation p + gy’ = 0 is exact and that h = 2yt? + t* + 2 + y? — y satisfies h}, = p
and h; = q. The solution of the differential equation is therefore

wt+tt 2+ yf—y=C
The inital condition y(1) = 0 gives that 2 = C, so we have that

2t +tr 2+ —y=2 = P+ -1y+t*+t2-2)=0
2



To find an explicit solution, we solve for y using the abc-formula:

(262 —1) £ /(22 —1)2 —4(t* + 12 —2) 1 —2t>+ /9 — 8¢2
2 B 2
Using the inital condition y(1) = 0 again, we see that the particular solution of the differential

equation is
1—2t2 + V9 — 82
y =
2

QUESTION 3.

To determine the definiteness of the quadratic form u, we may use the symmetric matrix A of
u, given by

2 1 -1
A=|11 3 0
-1 0 1

or alternatively the Hessian matrix of u, which is 24. We find that D1 = 2, Dy = 5 and
D3 = 2. Therefore, u is positiv definite. This means that u(z,y,z) > 0 for all (z,y, z), with
u > 0 when (z,y, z) # (0,0,0). Sou+1>1, and f(x,y,z) = In(u+1) is defined for all points
(x,7,z) in R3 since the natural logarithm is defined for all positive numbers.
The partial derivatives of f(x,y,z) = In(u + 1) are given by
, Adx+2y— 2z ; _ 2x+ 6y ,  —2x+2z

Je = u+1l 7 Ty = u+1"’ Je= u+1

Since u 4+ 1 > 1, the stationary points are the solutions to the linear equations

e +2y—22=0, 20+4+6y=0, —2x+22=0

We may observe that this is the linear system (24)x = 0, and since D3 = |A| # 0, this gives
x = 0. Or we may solve the equations: The last two give z = x and y = —x/3, and when we
substitute this in the first equation, we get

dr+2(—x/3)—2x=0 = 4z/3=0 = zx=0

This means that x = y = z = 0, so there is only one stationary point (z,y, z) = (0,0,0).

The stationary point (z,y,z) = (0,0,0) has function value f(0,0,0) = In(1) = 0, and when
(z,y,2) # (0,0,0) we have that u(x,y, z) > 0 and hence that f(z,y,2) = In(u+1) > In(1) = 0.
Therefore (0,0,0) is the minimizer of f, with minimal value f(0,0,0) = 0. To check if f is
convex, we start by computing Dy = f7 :

Tx*
Dy = " = 4o + 2y — 22’ 4227 + 2zy 4 3y — 20z + 22 + 1) — (4o + 2y — 22)?
P Jew ™ u+1 N (u+1)2
Let for example x = 1, y = z = 0. Then D; has value
4(2+1)—42 4
D=——"7F—=—-<0

! (2+1)2 9
It follows that the requirement D; > 0 for all (x,y,2) is not satisfied. Therfore, f is not
convex.

xT

QUESTION 4.

The boundary of the set of S of admissible points is given by the equation xy = 4, and it is

therefore the graph of y = 4/x, an hyperbola. This hyperbola, and the region S of admissible

points, is shown in the figure below. When = > 0, xy > 4 gives y > 4/z, so the region with

xy > 4 lies above the hyperbola. When z < 0, xy > 4 gives y < 4/x, so the region with zy > 4

lies below the hyperbola. Even though the drawing only shows points with —10 < z, y, < 10,

we see that the region S is not bounded. In fact, the point (x,y) = (a,a) is in S when a — oo
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since 2y = a? > 4 when a > 2. The points (x,y) in S that minimizes the distance d(x,y) to
the origin are the points that minimizes f(x,y), since

f(x,y) :$2+y2 = (Vx2+y2>2 :d<$7y)2

It is clear from the figure that there are two points (z,y) that minimizes this distance. In fact,
it seems from the drawing that those points are (2,2) and (-2, —2).

Y

(b) We write the Kuhn-Tucker problem in standard form as
max —f(z,y) = —z% — y? subject to —zy < —4
It has Lagrangian £ = —22 —y? — A(—2y) = —2? —y?+ Azy. The first order conditions (FOC)
are
Ll=-2z+Xy=0
r_ _
L,=-2y+Ax =0
the constraint (C) is given by zy > 4, and the complementary slackness conditions (CSC) are
given by
A>0 and AM(xzy—4) =0
The FOC'’s give that z = A\y/2 and —2y + Az = —2y + A(Ay/2) = 0, or y/2 - (—4 + A2) = 0.
This gives y = 0 or A = £2. If y = 0, then = = 0 by the FOC’s, and zy = 0 does not satisfy
the constraint. If A = +2, then we must have A = 2 and xy = 4 by the CSC’s. In this case,

the FOC’s give x = y, which means that zy = 2> = 4 and that x = £2. We find two solutions
of the Kuhn-Tucker conditions:

(l'ay;)‘) = (272;2)? (‘Tay; )‘) = (_2a _2;2)

Both points give f(z,y) = 22 + 22 = 8. To show that these points are actually the minimizers
of f, we can apply SOC: With A\ = 2, the Lagrangian L(z,y;2) = —2% — y? + 2xy. This is
clearly a concave function since it has Hessian

(2 %)
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with D; = —2 and Dy = 0, and A; = —2, -2 and Ay = 0. Therefore (z,y) = (2,2), (-2, —2)
are maximizers for —f and minimizers of f. Alternatively, we could prove this by invoking
the geometric argument from a) that f has a minimum, and show that there are no admissible
points where NDCQ fails since
rk (y :c) <1

means that x = y = 0, which is not an admissible point. Therefore, the minimum is obtained
at the points (2,2) and (—2, —2), the only points that that satisfy the Kuhn-Tucker conditions
FOC+C+CSC.

We write the Kuhn-Tucker problem in standard form as
—xz < —9
max —f(z,y,2z,w) = *($2 + y2 + 22+ wz) subject to e =
—yw < —25

Therefore, the Lagrangian of the problem is given by
L=—(*+ 3>+ 22 + w?) — M (—22) — da(—yw)
= —2? —y? — 22 —w? 4+ \zz + Ayw
The first order conditions (FOC) are
L =-22+X\z=0
L, =—=2y+lw=0
L, =-224+M\z=0
L, =—2w+Xy=0
the constraints (C) is given by zz > 9 and yw > 25, and the complementary slackness
conditions (CSC) are given by
A1 >0 and A\(zz—9)=0
A2 >0 and A(yw —25) =0
From the first two FOC’s we see that x = A\;2/2 and y = Aaw/2. When we substitute this
into the last two FOC’s, we get
224+ A1 (A12/2) = —2(4 A2 =0
and
—2w + Ap(Aow/2) = —%(4 —)2)=0

From the first equation, we get z = 0 or Ay = +2. If 2 = 0, then xz = 0, and the constraint
xz > 9 is not satisfied. Therefore, we get Ay = 2 and zz = 9 from the first CSC’s. The FOC’s
then give = z, so that 22> = 9 and = z = +3. From the second equation, we get w = 0 or
Ao = £2. If w = 0, then yw = 0, and the constraint yw > 25 is not satisfied. Therefore, we
get Ao = 2 and yw = 25 from the last CSC’s. The FOC’s then give y = w, so that y? = 25 and
y = w = £5. From all of this, we get the following solutions to the Kuhn-Tucker conditions
FOC+C+CSC:
(1“a Y, 2, W, )‘la )‘2) :(37 5) 3) 5, 27 2)a (3) _57 37 _57 27 2)7
(=3,5,-3,5;2,2),(—3,-5,—-3,—5;2,2)
At all four points we have f(x,y,z,w) = 32+ 5%+ 52+ 32 = 68. To show the these four points
minimizes f, we apply the SOC: We consider the Lagrangian
L(z,y,z,w;2,2) = —x? —y? — 22 —w? + 222 + 2w

It has Hessian

-2 0 2 0
0 -2 0 2
H = 2 0 -2 0

0o 2 0 =2
It has leading principal minors D; = —2, Dy = 4, D3 = 0 and Dy = 0. To compute all

principal minors, we notice that rkH = 2, so that A3 = 0 and A4 = 0 for all principal minors
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of order 3 or 4. Furthermore, we have A1 = —2, -2, -2, -2 < 0 and Ay = 4,0,4,4,0,4 > 0.
It follows that H is negative semidefinite, and therefore that the four points above maximizes
—f, and minimizes f. The minimium value is therefore f = 68.
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