
Solutions Final exam in GRA 6035 Mathematics
Date December 11th, 2015 at 0900 - 1200

Question 1.

(a) The rank of A is two since it has an echelon form

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 →


1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0


The linear system Ax = 0 has free variables z, w and the solution is given by the equations
x+ w = 0 and y + z = 0, which gives x = −w and y = −z, or

x =


−w
−z
z
w

 = z


0
−1
1
0

+ w


−1
0
0
1


(b) Since A is symmetric, it is diagonalizable. The eigenvalues are given by the characteristic

equation det(A− λI) = 0, which becomes∣∣∣∣∣∣∣∣
−λ 1 1 0
1 −λ 0 1
1 0 −λ 1
0 1 1 −λ

∣∣∣∣∣∣∣∣ = 0

This gives the equation

−λ(−λ(λ2 − 1) + 1(λ))− 1(1(λ2 − 1)− 1(−1)) + 1(1(−1)− 1(λ2 − 1)) = 0

which gives, after multiplication, that

λ2(λ2 − 1)− λ2 − λ2 − λ2 = λ2(λ2 − 1− 3) = λ2(λ2 − 4) = λ2(λ− 2)(λ+ 2) = 0

The eigenvalues are therefore λ = 0 (with multiplicity two), λ = 2 and λ = −2 (both with
multiplicity one).

(c) We know that there is an invertible matrix P such that P−1AP = D is diagonal, since
A is diagonalizable. Therefore D2 = (P−1AP )(P−1AP ) = P−1A2P , so B = A2 is also
diagonalizable. We have that

D =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 −2

 ⇒ D2 =


0 0 0 0
0 0 0 0
0 0 4 0
0 0 0 4


The eigenvaluess of B = A2 are therefore λ = 0 (with multiplicity two) and λ = 4 (with
multiplicity two). Alternatively, one could answer this question by computing

B = A2 =


2 0 0 2
0 2 2 0
0 2 2 0
2 0 0 2


Since B is symmetric, it is diagonalizable. We could find the eigenvalues of B by solving the
characteristic equation det(B−λI) = 0, which gives λ2(λ−4)2 = 0, or λ = 0 (with multiplicity
two) and λ = 4 (with multiplicity two).
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(d) We know that xt+1 = Txt is a regular Markov chain, since all entries in T are positive, so the
equilibrium state x is the unique eigenvalue of T with eigenvalue λ = 1 that is a state vector.
We compute the eigenvectors with eigenvalue λ = 1:−0.45 0.10 0.15

0.10 −0.20 0.05
0.35 0.10 −0.20

 →

−45 10 15
10 −20 5
35 10 −20

 →

 10 −20 5
−45 10 15
35 10 −20


→

10 −20 5
0 −80 37.5
0 80 −37.5

 →

10 −20 5
0 −160 75
0 0 0


We see that z is free, that y = 75z/160 and that 10x = 20(75z/160) − 5z = 35z/8, so
x = 35z/80 = 70z/160. The unique eigenvector that is a state vector is given by

x+ y + z = 1 ⇒ 70z + 75z + 160z

160
=

305z

160
= 1

which gives z = 160/305. This gives equilibrium state x with

x =
70

305
=

14

61
≈ 0.23, y =

75

305
=

15

61
≈ 0.25, z =

160

305
=

32

61
≈ 0.52

Question 2.

(a) The differential equation y′′− 4y′− 12y = 15et is second order linear, and has general solution
y = yh + yp. The homogeneous solution is

yh = C1e
6t + C2e

−2t

since the characteristic equation r2− 4r− 12 = 0 has solutions r = 6 and r = −2. To find the
particular solution, we guess a solution of the form y = Aet, since f(t) = 15et = f ′(t) = f ′′(t).
We compute y′ = y′′ = Aet, which gives

Aet(1− 4− 12) = 15et ⇒ −15Aet = 15et

We see that A = −1 is a solution, so yP = −et and the general solution is

y = C1e
6t + C2e

−2t − et

(b) The differential equation y′ = 3
√
t · e−2y is separable, and it can be written in the form

e2yy′ = 3t1/2 ⇔
∫
e2y dy =

∫
3t1/2 dt

Integration gives e2y/2 = 2 · t3/2 + C, and therefore that

e2y = 4t3/2 + 2C = 4t
√
t+ 2C or y =

1

2
ln
(

4t
√
t+ 2C

)
(c) The differential equation 4yt + 4t3 + 2t + (2y − 1 + 2t2)y′ = 0 can be written in the form

p+ qy′ = 0 with

p = 4yt+ 4t3 + 2t, q = 2y − 1 + 2t2

We attempt to find a function h = h(y, t) such that h′t = p and h′y = q. From the first equation,

we see that h = 2yt2 + t4 + t2 +φ(y), since (2yt2 + t4 + t2 +φ(y))′t = 4yt+ 4t3 + 2t = p. Using
this expression for h, the second condition becomes

h′y = 2t2 + φ′(y) = 2y − 1 + 2t2

which is satisfied if φ′(y) = 2y − 1, and one solution is φ(y) = y2 − y. This implies that
differential equation p+ qy′ = 0 is exact and that h = 2yt2 + t4 + t2 + y2 − y satisfies h′t = p
and h′y = q. The solution of the differential equation is therefore

2yt2 + t4 + t2 + y2 − y = C
The inital condition y(1) = 0 gives that 2 = C, so we have that

2yt2 + t4 + t2 + y2 − y = 2 ⇒ y2 + (2t2 − 1)y + (t4 + t2 − 2) = 0
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To find an explicit solution, we solve for y using the abc-formula:

y =
−(2t2 − 1)±

√
(2t2 − 1)2 − 4(t4 + t2 − 2)

2
=

1− 2t2 ±
√

9− 8t2

2

Using the inital condition y(1) = 0 again, we see that the particular solution of the differential
equation is

y =
1− 2t2 +

√
9− 8t2

2

Question 3.

(a) To determine the definiteness of the quadratic form u, we may use the symmetric matrix A of
u, given by

A =

 2 1 −1
1 3 0
−1 0 1


or alternatively the Hessian matrix of u, which is 2A. We find that D1 = 2, D2 = 5 and
D3 = 2. Therefore, u is positiv definite. This means that u(x, y, z) ≥ 0 for all (x, y, z), with
u > 0 when (x, y, z) 6= (0, 0, 0). So u+ 1 ≥ 1, and f(x, y, z) = ln(u+ 1) is defined for all points
(x, y, z) in R3 since the natural logarithm is defined for all positive numbers.

(b) The partial derivatives of f(x, y, z) = ln(u+ 1) are given by

f ′x =
4x+ 2y − 2z

u+ 1
, f ′y =

2x+ 6y

u+ 1
, f ′z =

−2x+ 2z

u+ 1

Since u+ 1 ≥ 1, the stationary points are the solutions to the linear equations

4x+ 2y − 2z = 0, 2x+ 6y = 0, −2x+ 2z = 0

We may observe that this is the linear system (2A)x = 0, and since D3 = |A| 6= 0, this gives
x = 0. Or we may solve the equations: The last two give z = x and y = −x/3, and when we
substitute this in the first equation, we get

4x+ 2(−x/3)− 2x = 0 ⇒ 4x/3 = 0 ⇒ x = 0

This means that x = y = z = 0, so there is only one stationary point (x, y, z) = (0, 0, 0).
(c) The stationary point (x, y, z) = (0, 0, 0) has function value f(0, 0, 0) = ln(1) = 0, and when

(x, y, z) 6= (0, 0, 0) we have that u(x, y, z) > 0 and hence that f(x, y, z) = ln(u+1) > ln(1) = 0.
Therefore (0, 0, 0) is the minimizer of f , with minimal value f(0, 0, 0) = 0. To check if f is
convex, we start by computing D1 = f ′′xx:

D1 = f ′′xx =

(
4x+ 2y − 2z

u+ 1

)′
x

=
4(2x2 + 2xy + 3y2 − 2xz + z2 + 1)− (4x+ 2y − 2z)2

(u+ 1)2

Let for example x = 1, y = z = 0. Then D1 has value

D1 =
4(2 + 1)− 42

(2 + 1)2
= −4

9
< 0

It follows that the requirement D1 ≥ 0 for all (x, y, z) is not satisfied. Therfore, f is not
convex.

Question 4.

(a) The boundary of the set of S of admissible points is given by the equation xy = 4, and it is
therefore the graph of y = 4/x, an hyperbola. This hyperbola, and the region S of admissible
points, is shown in the figure below. When x > 0, xy > 4 gives y > 4/x, so the region with
xy > 4 lies above the hyperbola. When x < 0, xy > 4 gives y < 4/x, so the region with xy > 4
lies below the hyperbola. Even though the drawing only shows points with −10 ≤ x, y,≤ 10,
we see that the region S is not bounded. In fact, the point (x, y) = (a, a) is in S when a→∞
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since xy = a2 ≥ 4 when a ≥ 2. The points (x, y) in S that minimizes the distance d(x, y) to
the origin are the points that minimizes f(x, y), since

f(x, y) = x2 + y2 =
(√

x2 + y2
)2

= d(x, y)2

It is clear from the figure that there are two points (x, y) that minimizes this distance. In fact,
it seems from the drawing that those points are (2, 2) and (−2,−2).
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(b) We write the Kuhn-Tucker problem in standard form as

max −f(x, y) = −x2 − y2 subject to − xy ≤ −4

It has Lagrangian L = −x2−y2−λ(−xy) = −x2−y2 +λxy. The first order conditions (FOC)
are

L′x = −2x+ λy = 0

L′y = −2y + λx = 0

the constraint (C) is given by xy ≥ 4, and the complementary slackness conditions (CSC) are
given by

λ ≥ 0 and λ(xy − 4) = 0

The FOC’s give that x = λy/2 and −2y + λx = −2y + λ(λy/2) = 0, or y/2 · (−4 + λ2) = 0.
This gives y = 0 or λ = ±2. If y = 0, then x = 0 by the FOC’s, and xy = 0 does not satisfy
the constraint. If λ = ±2, then we must have λ = 2 and xy = 4 by the CSC’s. In this case,
the FOC’s give x = y, which means that xy = x2 = 4 and that x = ±2. We find two solutions
of the Kuhn-Tucker conditions:

(x, y;λ) = (2, 2; 2), (x, y;λ) = (−2,−2; 2)

Both points give f(x, y) = 22 + 22 = 8. To show that these points are actually the minimizers
of f , we can apply SOC: With λ = 2, the Lagrangian L(x, y; 2) = −x2 − y2 + 2xy. This is
clearly a concave function since it has Hessian(

−2 2
2 −2

)
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with D1 = −2 and D2 = 0, and ∆1 = −2,−2 and ∆2 = 0. Therefore (x, y) = (2, 2), (−2,−2)
are maximizers for −f and minimizers of f . Alternatively, we could prove this by invoking
the geometric argument from a) that f has a minimum, and show that there are no admissible
points where NDCQ fails since

rk
(
y x

)
< 1

means that x = y = 0, which is not an admissible point. Therefore, the minimum is obtained
at the points (2, 2) and (−2,−2), the only points that that satisfy the Kuhn-Tucker conditions
FOC+C+CSC.

(c) We write the Kuhn-Tucker problem in standard form as

max −f(x, y, z, w) = −(x2 + y2 + z2 + w2) subject to

{
−xz ≤ −9

−yw ≤ −25

Therefore, the Lagrangian of the problem is given by

L = −(x2 + y2 + z2 + w2)− λ1(−xz)− λ2(−yw)

= −x2 − y2 − z2 − w2 + λ1xz + λ2yw

The first order conditions (FOC) are

L′x = −2x+ λ1z = 0

L′y = −2y + λ2w = 0

L′z = −2z + λ1x = 0

L′w = −2w + λ2y = 0

the constraints (C) is given by xz ≥ 9 and yw ≥ 25, and the complementary slackness
conditions (CSC) are given by

λ1 ≥ 0 and λ1(xz − 9) = 0

λ2 ≥ 0 and λ2(yw − 25) = 0

From the first two FOC’s we see that x = λ1z/2 and y = λ2w/2. When we substitute this
into the last two FOC’s, we get

−2z + λ1(λ1z/2) = −z
2

(4− λ21) = 0

and
−2w + λ2(λ2w/2) = −w

2
(4− λ22) = 0

From the first equation, we get z = 0 or λ1 = ±2. If z = 0, then xz = 0, and the constraint
xz ≥ 9 is not satisfied. Therefore, we get λ1 = 2 and xz = 9 from the first CSC’s. The FOC’s
then give x = z, so that x2 = 9 and x = z = ±3. From the second equation, we get w = 0 or
λ2 = ±2. If w = 0, then yw = 0, and the constraint yw ≥ 25 is not satisfied. Therefore, we
get λ2 = 2 and yw = 25 from the last CSC’s. The FOC’s then give y = w, so that y2 = 25 and
y = w = ±5. From all of this, we get the following solutions to the Kuhn-Tucker conditions
FOC+C+CSC:

(x, y, z, w;λ1, λ2) =(3, 5, 3, 5; 2, 2), (3,−5, 3,−5; 2, 2),

(−3, 5,−3, 5; 2, 2), (−3,−5,−3,−5; 2, 2)

At all four points we have f(x, y, z, w) = 32 + 52 + 52 + 32 = 68. To show the these four points
minimizes f , we apply the SOC: We consider the Lagrangian

L(x, y, z, w; 2, 2) = −x2 − y2 − z2 − w2 + 2xz + 2yw

It has Hessian

H =


−2 0 2 0
0 −2 0 2
2 0 −2 0
0 2 0 −2


It has leading principal minors D1 = −2, D2 = 4, D3 = 0 and D4 = 0. To compute all
principal minors, we notice that rkH = 2, so that ∆3 = 0 and ∆4 = 0 for all principal minors
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of order 3 or 4. Furthermore, we have ∆1 = −2,−2,−2,−2 ≤ 0 and ∆2 = 4, 0, 4, 4, 0, 4 ≥ 0.
It follows that H is negative semidefinite, and therefore that the four points above maximizes
−f , and minimizes f . The minimium value is therefore f = 68.
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