QUESTION 1.

(a) The rank of A is two since it has an echelon form

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The linear system $A\mathbf{x} = \mathbf{0}$ has free variables z, w and the solution is given by the equations x + w = 0 and y + z = 0, which gives x = -w and y = -z, or

$$\mathbf{x} = \begin{pmatrix} -w \\ -z \\ z \\ w \end{pmatrix} = z \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

(b) Since A is symmetric, it is diagonalizable. The eigenvalues are given by the characteristic equation $det(A - \lambda I) = 0$, which becomes

$$\begin{vmatrix} -\lambda & 1 & 1 & 0 \\ 1 & -\lambda & 0 & 1 \\ 1 & 0 & -\lambda & 1 \\ 0 & 1 & 1 & -\lambda \end{vmatrix} = 0$$

This gives the equation

$$-\lambda(-\lambda(\lambda^2 - 1) + 1(\lambda)) - 1(1(\lambda^2 - 1) - 1(-1)) + 1(1(-1) - 1(\lambda^2 - 1)) = 0$$

which gives, after multiplication, that

$$\lambda^{2}(\lambda^{2} - 1) - \lambda^{2} - \lambda^{2} - \lambda^{2} = \lambda^{2}(\lambda^{2} - 1 - 3) = \lambda^{2}(\lambda^{2} - 4) = \lambda^{2}(\lambda - 2)(\lambda + 2) = 0$$

The eigenvalues are therefore $\lambda = 0$ (with multiplicity two), $\lambda = 2$ and $\lambda = -2$ (both with multiplicity one).

(c) We know that there is an invertible matrix P such that $P^{-1}AP = D$ is diagonal, since A is diagonalizable. Therefore $D^2 = (P^{-1}AP)(P^{-1}AP) = P^{-1}A^2P$, so $B = A^2$ is also diagonalizable. We have that

The eigenvaluess of $B = A^2$ are therefore $\lambda = 0$ (with multiplicity two) and $\lambda = 4$ (with multiplicity two). Alternatively, one could answer this question by computing

$$B = A^{2} = \begin{pmatrix} 2 & 0 & 0 & 2 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{pmatrix}$$

Since B is symmetric, it is diagonalizable. We could find the eigenvalues of B by solving the characteristic equation $\det(B-\lambda I) = 0$, which gives $\lambda^2(\lambda-4)^2 = 0$, or $\lambda = 0$ (with multiplicity two) and $\lambda = 4$ (with multiplicity two).

(d) We know that $\mathbf{x}_{t+1} = T\mathbf{x}_t$ is a regular Markov chain, since all entries in T are positive, so the equilibrium state \mathbf{x} is the unique eigenvalue of T with eigenvalue $\lambda = 1$ that is a state vector. We compute the eigenvectors with eigenvalue $\lambda = 1$:

$$\begin{pmatrix} -0.45 & 0.10 & 0.15 \\ 0.10 & -0.20 & 0.05 \\ 0.35 & 0.10 & -0.20 \end{pmatrix} \rightarrow \begin{pmatrix} -45 & 10 & 15 \\ 10 & -20 & 5 \\ 35 & 10 & -20 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & -20 & 5 \\ -45 & 10 & 15 \\ 35 & 10 & -20 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 10 & -20 & 5 \\ 0 & -80 & 37.5 \\ 0 & 80 & -37.5 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & -20 & 5 \\ 0 & -160 & 75 \\ 0 & 0 & 0 \end{pmatrix}$$

We see that z is free, that y = 75z/160 and that 10x = 20(75z/160) - 5z = 35z/8, so x = 35z/80 = 70z/160. The unique eigenvector that is a state vector is given by

$$x + y + z = 1 \quad \Rightarrow \quad \frac{70z + 75z + 160z}{160} = \frac{305z}{160} = 1$$

which gives z = 160/305. This gives equilibrium state **x** with

$$x = \frac{70}{305} = \frac{14}{61} \approx 0.23, \quad y = \frac{75}{305} = \frac{15}{61} \approx 0.25, \quad z = \frac{160}{305} = \frac{32}{61} \approx 0.52$$

QUESTION 2.

(a) The differential equation $y'' - 4y' - 12y = 15e^t$ is second order linear, and has general solution $y = y_h + y_p$. The homogeneous solution is

$$y_h = C_1 e^{6t} + C_2 e^{-2t}$$

since the characteristic equation $r^2 - 4r - 12 = 0$ has solutions r = 6 and r = -2. To find the particular solution, we guess a solution of the form $y = Ae^t$, since $f(t) = 15e^t = f'(t) = f''(t)$. We compute $y' = y'' = Ae^t$, which gives

$$Ae^{t}(1-4-12) = 15e^{t} \Rightarrow -15Ae^{t} = 15e^{t}$$

We see that A = -1 is a solution, so $y_P = -e^t$ and the general solution is

$$y = C_1 e^{6t} + C_2 e^{-2t} - e^t$$

(b) The differential equation $y' = 3\sqrt{t} \cdot e^{-2y}$ is separable, and it can be written in the form

$$e^{2y}y' = 3t^{1/2} \quad \Leftrightarrow \quad \int e^{2y} \, dy = \int 3t^{1/2} \, dt$$

Integration gives $e^{2y}/2 = 2 \cdot t^{3/2} + C$, and therefore that

$$e^{2y} = 4t^{3/2} + 2\mathcal{C} = 4t\sqrt{t} + 2\mathcal{C}$$
 or $y = \frac{1}{2}\ln\left(4t\sqrt{t} + 2\mathcal{C}\right)$

(c) The differential equation $4yt + 4t^3 + 2t + (2y - 1 + 2t^2)y' = 0$ can be written in the form p + qy' = 0 with

$$p = 4yt + 4t^3 + 2t, \quad q = 2y - 1 + 2t^2$$

We attempt to find a function h = h(y,t) such that $h'_t = p$ and $h'_y = q$. From the first equation, we see that $h = 2yt^2 + t^4 + t^2 + \phi(y)$, since $(2yt^2 + t^4 + t^2 + \phi(y))'_t = 4yt + 4t^3 + 2t = p$. Using this expression for h, the second condition becomes

$$h'_y = 2t^2 + \phi'(y) = 2y - 1 + 2t^2$$

which is satisfied if $\phi'(y) = 2y - 1$, and one solution is $\phi(y) = y^2 - y$. This implies that differential equation p + qy' = 0 is exact and that $h = 2yt^2 + t^4 + t^2 + y^2 - y$ satisfies $h'_t = p$ and $h'_y = q$. The solution of the differential equation is therefore

$$2yt^2 + t^4 + t^2 + y^2 - y = \mathcal{C}$$

The initial condition y(1) = 0 gives that $2 = \mathcal{C}$, so we have that

$$2yt^{2} + t^{4} + t^{2} + y^{2} - y = 2 \quad \Rightarrow \quad y^{2} + (2t^{2} - 1)y + (t^{4} + t^{2} - 2) = 0$$

To find an explicit solution, we solve for y using the abc-formula:

$$y = \frac{-(2t^2 - 1) \pm \sqrt{(2t^2 - 1)^2 - 4(t^4 + t^2 - 2)}}{2} = \frac{1 - 2t^2 \pm \sqrt{9 - 8t^2}}{2}$$

Using the initial condition y(1) = 0 again, we see that the particular solution of the differential equation is

$$y = \frac{1 - 2t^2 + \sqrt{9 - 8t^2}}{2}$$

QUESTION 3.

(a) To determine the definiteness of the quadratic form u, we may use the symmetric matrix A of u, given by

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

or alternatively the Hessian matrix of u, which is 2A. We find that $D_1 = 2$, $D_2 = 5$ and $D_3 = 2$. Therefore, u is positiv definite. This means that $u(x, y, z) \ge 0$ for all (x, y, z), with u > 0 when $(x, y, z) \ne (0, 0, 0)$. So $u + 1 \ge 1$, and $f(x, y, z) = \ln(u + 1)$ is defined for all points (x, y, z) in \mathbb{R}^3 since the natural logarithm is defined for all positive numbers.

(b) The partial derivatives of $f(x, y, z) = \ln(u+1)$ are given by

$$f'_x = \frac{4x + 2y - 2z}{u+1}, \quad f'_y = \frac{2x + 6y}{u+1}, \quad f'_z = \frac{-2x + 2z}{u+1}$$

Since $u + 1 \ge 1$, the stationary points are the solutions to the linear equations

$$4x + 2y - 2z = 0, \quad 2x + 6y = 0, \quad -2x + 2z = 0$$

We may observe that this is the linear system $(2A)\mathbf{x} = \mathbf{0}$, and since $D_3 = |A| \neq 0$, this gives $\mathbf{x} = \mathbf{0}$. Or we may solve the equations: The last two give z = x and y = -x/3, and when we substitute this in the first equation, we get

$$4x + 2(-x/3) - 2x = 0 \quad \Rightarrow \quad 4x/3 = 0 \quad \Rightarrow \quad x = 0$$

This means that x = y = z = 0, so there is only one stationary point (x, y, z) = (0, 0, 0).

(c) The stationary point (x, y, z) = (0, 0, 0) has function value $f(0, 0, 0) = \ln(1) = 0$, and when $(x, y, z) \neq (0, 0, 0)$ we have that u(x, y, z) > 0 and hence that $f(x, y, z) = \ln(u+1) > \ln(1) = 0$. Therefore (0, 0, 0) is the minimizer of f, with minimal value f(0, 0, 0) = 0. To check if f is convex, we start by computing $D_1 = f''_{xx}$:

$$D_1 = f_{xx}'' = \left(\frac{4x + 2y - 2z}{u+1}\right)_x' = \frac{4(2x^2 + 2xy + 3y^2 - 2xz + z^2 + 1) - (4x + 2y - 2z)^2}{(u+1)^2}$$

Let for example x = 1, y = z = 0. Then D_1 has value

$$D_1 = \frac{4(2+1) - 4^2}{(2+1)^2} = -\frac{4}{9} < 0$$

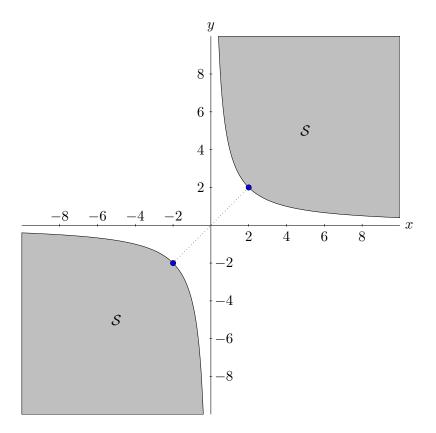
It follows that the requirement $D_1 \ge 0$ for all (x, y, z) is not satisfied. Therfore, f is not convex.

QUESTION 4.

(a) The boundary of the set of S of admissible points is given by the equation xy = 4, and it is therefore the graph of y = 4/x, an hyperbola. This hyperbola, and the region S of admissible points, is shown in the figure below. When x > 0, xy > 4 gives y > 4/x, so the region with xy > 4 lies above the hyperbola. When x < 0, xy > 4 gives y < 4/x, so the region with xy > 4lies below the hyperbola. Even though the drawing only shows points with $-10 \le x, y, \le 10$, we see that the region S is not bounded. In fact, the point (x, y) = (a, a) is in S when $a \to \infty$ since $xy = a^2 \ge 4$ when $a \ge 2$. The points (x, y) in S that minimizes the distance d(x, y) to the origin are the points that minimizes f(x, y), since

$$f(x,y) = x^{2} + y^{2} = \left(\sqrt{x^{2} + y^{2}}\right)^{2} = d(x,y)^{2}$$

It is clear from the figure that there are two points (x, y) that minimizes this distance. In fact, it seems from the drawing that those points are (2, 2) and (-2, -2).



(b) We write the Kuhn-Tucker problem in standard form as

max
$$-f(x,y) = -x^2 - y^2$$
 subject to $-xy \le -4$

It has Lagrangian $\mathcal{L} = -x^2 - y^2 - \lambda(-xy) = -x^2 - y^2 + \lambda xy$. The first order conditions (FOC) are

$$\mathcal{L}'_x = -2x + \lambda y = 0$$
$$\mathcal{L}'_y = -2y + \lambda x = 0$$

the constraint (C) is given by $xy \ge 4$, and the complementary slackness conditions (CSC) are given by

$$\lambda \ge 0$$
 and $\lambda(xy-4) = 0$

The FOC's give that $x = \lambda y/2$ and $-2y + \lambda x = -2y + \lambda(\lambda y/2) = 0$, or $y/2 \cdot (-4 + \lambda^2) = 0$. This gives y = 0 or $\lambda = \pm 2$. If y = 0, then x = 0 by the FOC's, and xy = 0 does not satisfy the constraint. If $\lambda = \pm 2$, then we must have $\lambda = 2$ and xy = 4 by the CSC's. In this case, the FOC's give x = y, which means that $xy = x^2 = 4$ and that $x = \pm 2$. We find two solutions of the Kuhn-Tucker conditions:

$$(x, y; \lambda) = (2, 2; 2), \quad (x, y; \lambda) = (-2, -2; 2)$$

Both points give $f(x, y) = 2^2 + 2^2 = 8$. To show that these points are actually the minimizers of f, we can apply SOC: With $\lambda = 2$, the Lagrangian $\mathcal{L}(x, y; 2) = -x^2 - y^2 + 2xy$. This is clearly a concave function since it has Hessian

$$\begin{pmatrix} -2 & 2\\ 2 & -2 \end{pmatrix}_{4}$$

with $D_1 = -2$ and $D_2 = 0$, and $\Delta_1 = -2, -2$ and $\Delta_2 = 0$. Therefore (x, y) = (2, 2), (-2, -2) are maximizers for -f and minimizers of f. Alternatively, we could prove this by invoking the geometric argument from a) that f has a minimum, and show that there are no admissible points where NDCQ fails since

$$\operatorname{rk}(y \ x) < 1$$

means that x = y = 0, which is not an admissible point. Therefore, the minimum is obtained at the points (2, 2) and (-2, -2), the only points that that satisfy the Kuhn-Tucker conditions FOC+C+CSC.

(c) We write the Kuhn-Tucker problem in standard form as

max
$$-f(x, y, z, w) = -(x^2 + y^2 + z^2 + w^2)$$
 subject to
$$\begin{cases} -xz \le -9\\ -yw \le -25 \end{cases}$$

Therefore, the Lagrangian of the problem is given by

$$\mathcal{L} = -(x^2 + y^2 + z^2 + w^2) - \lambda_1(-xz) - \lambda_2(-yw)$$

= $-x^2 - y^2 - z^2 - w^2 + \lambda_1 xz + \lambda_2 yw$

The first order conditions (FOC) are

$$\mathcal{L}'_x = -2x + \lambda_1 z = 0$$

$$\mathcal{L}'_y = -2y + \lambda_2 w = 0$$

$$\mathcal{L}'_z = -2z + \lambda_1 x = 0$$

$$\mathcal{L}'_w = -2w + \lambda_2 y = 0$$

the constraints (C) is given by $xz \ge 9$ and $yw \ge 25$, and the complementary slackness conditions (CSC) are given by

$$\lambda_1 \ge 0$$
 and $\lambda_1(xz-9) = 0$
 $\lambda_2 \ge 0$ and $\lambda_2(yw-25) = 0$

From the first two FOC's we see that $x = \lambda_1 z/2$ and $y = \lambda_2 w/2$. When we substitute this into the last two FOC's, we get

$$-2z + \lambda_1(\lambda_1 z/2) = -\frac{z}{2}(4 - \lambda_1^2) = 0$$

and

$$-2w + \lambda_2(\lambda_2 w/2) = -\frac{w}{2}(4 - \lambda_2^2) = 0$$

From the first equation, we get z = 0 or $\lambda_1 = \pm 2$. If z = 0, then xz = 0, and the constraint $xz \ge 9$ is not satisfied. Therefore, we get $\lambda_1 = 2$ and xz = 9 from the first CSC's. The FOC's then give x = z, so that $x^2 = 9$ and $x = z = \pm 3$. From the second equation, we get w = 0 or $\lambda_2 = \pm 2$. If w = 0, then yw = 0, and the constraint $yw \ge 25$ is not satisfied. Therefore, we get $\lambda_2 = 2$ and yw = 25 from the last CSC's. The FOC's then give y = w, so that $y^2 = 25$ and $y = w = \pm 5$. From all of this, we get the following solutions to the Kuhn-Tucker conditions FOC+C+CSC:

$$\begin{aligned} (x,y,z,w;\lambda_1,\lambda_2) = & (3,5,3,5;2,2), (3,-5,3,-5;2,2), \\ & (-3,5,-3,5;2,2), (-3,-5,-3,-5;2,2) \end{aligned}$$

At all four points we have $f(x, y, z, w) = 3^2 + 5^2 + 5^2 + 3^2 = 68$. To show the these four points minimizes f, we apply the SOC: We consider the Lagrangian

$$\mathcal{L}(x, y, z, w; 2, 2) = -x^2 - y^2 - z^2 - w^2 + 2xz + 2yu$$

It has Hessian

$$H = \begin{pmatrix} -2 & 0 & 2 & 0 \\ 0 & -2 & 0 & 2 \\ 2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 \end{pmatrix}$$

It has leading principal minors $D_1 = -2$, $D_2 = 4$, $D_3 = 0$ and $D_4 = 0$. To compute all principal minors, we notice that rkH = 2, so that $\Delta_3 = 0$ and $\Delta_4 = 0$ for all principal minors

of order 3 or 4. Furthermore, we have $\Delta_1 = -2, -2, -2, -2 \leq 0$ and $\Delta_2 = 4, 0, 4, 4, 0, 4 \geq 0$. It follows that H is negative semidefinite, and therefore that the four points above maximizes -f, and minimizes f. The minimium value is therefore f = 68.