
Solutions Final exam in GRA 6035 Mathematics
Date March 4th, 2016 at 1500 - 1800

Question 1.

(a) The rank of A is two since it has an echelon form

A =


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 →


1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0


The linear system Ax = 0 has free variables z, w and the solution is given by the equations
x+ z = 0 and y + w = 0, which gives x = −z and y = −w, or

x =


−z
−w
z
w

 = z


−1
0
1
0

+ w


0
−1
0
1


(b) Since A is symmetric, it is diagonalizable. The eigenvalues are given by the characteristic

equation det(A− λI) = 0, which becomes∣∣∣∣∣∣∣∣
1− λ 0 1 0

0 1− λ 0 1
1 0 1− λ 0
0 1 0 1− λ

∣∣∣∣∣∣∣∣ = 0

Cofactor expansion along the first column gives

(1− λ)

∣∣∣∣∣∣
1− λ 0 1

0 1− λ 0
1 0 1− λ

∣∣∣∣∣∣+ 1

∣∣∣∣∣∣
0 1 0

1− λ 0 1
1 0 1− λ

∣∣∣∣∣∣ = 0

and cofactor expansion along the second column in each of the new minors give

(1− λ)2((1− λ)2 − 1)− 1((1− λ)2 − 1) = 0

Since (1− λ)2 − 1 = λ2 − 2λ, this gives

((1− λ)2 − 1)(λ2 − 2λ) = (λ2 − 2λ)2 = λ2(λ− 2)2 = 0

The eigenvalues are therefore λ = 0 (with multiplicity two) and λ = 2 (with multiplicity two).
(c) The quadratic form is Q(x, y, z, w) = x2+2xz+y2+2yw+z2+w2. Since λ = 0 and λ = 2 > 0

are the eigenvalues of the symmetric matrix A, it follows that A is positive semidefinite (but
not positive definite). Alternatively, we may write Q = (x+z)2 +(y+w)2 ≥ 0 for all x, y, z, w,
or we may compute the leading principal minors

D1 = 1, D2 = 1, D3 = 0, D4 = 0

and all principal minors (since D3 = 0), given by

∆1 = 1, 1, 1, 1 ∆2 = 1, 0, 1, 1, 0, 1 ∆3 = 0 ∆4 = 0

where all ∆3,∆4 = 0 since A has rank two. The conclusion is that A is positive semidefinite
since all principal minors ∆i ≥ 0.

(d) We know that xt+1 = Txt is a regular Markov chain, since all entries in T are positive, so the
equilibrium state x is the unique eigenvalue of T with eigenvalue λ = 1 that is a state vector.
We compute the eigenvectors with eigenvalue λ = 1:−0.25 0.25 0.10

0.10 −0.40 0.05
0.15 0.15 −0.15

 →

−5 5 2
2 −8 1
3 3 −3

 →

1 −1 −0.40
0 6 −1.80
0 −6 1.80


→

1 −1 −0.40
0 1 −0.30
0 0 0
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We see that z is free, that y = 0.30z and that x = y + 0.40z = 0.70z. The unique eigenvector
that is a state vector is given by

x+ y + z = 1 ⇒ 0.70z + 0.30z + z = 2z = 1

which gives z = 1/2. This gives equilibrium state x with

x = 0.35 y = 0.15 z = 0.50

Question 2.

(a) The differential equation y′′ − 16y = e−t is second order linear, and has general solution
y = yh + yp. The homogeneous solution is

yh = C1e
4t + C2e

−4t

since the characteristic equation r2 − 16 = 0 has solutions r = 4 and r = −4. To find the
particular solution, we guess a solution of the form y = Ae−t, since f(t) = e−t, f ′(t) = −e−t
and f ′′(t) = e−t. We compute y′ = −Ae−t, y′′ = Ae−t, which gives

Ae−t(1− 16) = e−t ⇒ −15Ae−t = e−t

We see that A = −1/15 is a solution, so yP = −e−t/15 and the general solution is

y = C1e
4t + C2e

−4t − 1

15
e−t

(b) The differential equation (3t2y + 2ty2 + t3) + (t3 + 2yt2)y′ = 0 can be written in the form
p+ qy′ = 0 with

p = 3t2y + 2ty2 + t3, q = t3 + 2yt2

We attempt to find a function h = h(y, t) such that h′t = p and h′y = q. From the first equation,

we see that h = t3y+ t2y2 + t4/4 +φ(y), since (3y+ t2y2 + t4/4)′t = 3t2y+ 2ty2 + t3 = p. Using
this expression for h, the second condition becomes

h′y = t3 + 2t2y + φ′(y) = t3 + 2yt2

which is satisfied if φ′(y) = 0, and one solution is φ(y) = 0. This implies that differential
equation p+ qy′ = 0 is exact and that h = t3y + t2y2 + t4/4 satisfies h′t = p and h′y = q. The
solution of the differential equation is therefore

t3y + t2y2 + t4/4 = C

To find an explicit solution, we solve for y using the abc-formula:

y =
−t3 ±

√
t6 − 4t2(t4/4− C)

2t2
=
−t3 ±

√
4Ct2

2t2
= − t

2
±
√
C

t

(c) The differential equation y′ = yt/ ln(y) is separable, and it can be written in the form

ln y

y
y′ = t ⇔

∫
ln y

y
dy =

∫
t dt

The substitution u = ln y, with du = (1/y)dy gives that∫
ln y

y
dy =

∫
udu =

1

2
u2 + C =

1

2
(ln y)2 + C

Therefore, integration on both sides of the differential ewquation gives

1

2
(ln y)2 =

1

2
t2 + C ⇔ (ln y)2 = t2 + 2C

The initial condition y(0) = e gives 12 = 0 + 2C, or C = 1/2, and we find

ln y =
√
t2 + 1 ⇔ y = e

√
t2+1
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Question 3.

(a) The partial derivatives of f(x, y, z) = e1−u, with u = x2 + 2xy + 3y2 + 2yz + z2, are given by

f ′x = e1−u · (−u′x) = e1−u(−2x− 2y)

f ′y = e1−u · (−u′y) = e1−u(−2x− 6y − 2z)

f ′z = e1−u · (−u′z) = e1−u(−2y − 2z)

Since e1−u > 0, the stationary points are the solutions to the linear equations

−2x− 2y = 0, −2x− 6y − 2z = 0, −2y − 2z = 0

The last equation gives y = −z, and the first that x = −y = z, and this implies that
−2z + 6z − 2z = 0 by the middle equation. This gives z = 0, and therefore x = y = z = 0.
The function f has one stationary point (x, y, z) = (0, 0, 0).

(b) To classify (0, 0, 0), we compute the Hessian H(f)(0, 0, 0) at this point. We find that

f ′′xx = e1−u(−u′′xx) + e1−u(−u′x) · (−u′x) = e1−u((u′x)2 − u′′xx) = e1−u(4(x+ y)2 − 2)

The other second order partial derivatives can be computed in a similar way. In f ′′ab, where
a, b are two of the variables x, y, z, we see that only the non-zero term after we substitute
(x, y, z) = (0, 0, 0) is

f ′′ab = e1−u · (−u′′ab) = −e · u′′ab
We therefore find the Hesssian

H(f)(0, 0, 0) = −e ·H(u) = −e

2 2 0
2 6 2
0 2 2


Since D1 = −2e < 0, D2 = (12 − 4)e2 = 8e2 > 0 and D3 = −(16 − 8)e3 = −8e3 < 0, it
follows that H(f)(0, 0, 0) is negative definite and that the stationary point (0, 0, 0) is a local
maximum for f .

(c) We may write f(x, y, z) = e1−u(x,y,z) = ew with w = 1 − u, and we known that ew is an
increasing function in w since (ew)′w = ew > 0. This means that

w1 < w2 ⇒ ew1 ≤ ew2

and f has a global maximum if w = 1− u has a global maximum. We have that

H(1− u) = H(−u) =

−2 −2 0
−2 −6 −2
0 −2 −2


is negative definite. In fact, it is equal to H(f)(0, 0, 0)/e since H(f)(0, 0, 0) = −eH(u), and
H(f)(0, 0, 0) is negative definite. But we may also show that H(1 − u) is negative definite
directly, since H(1− u) = H(−u) has leading principal minors D1 = −2, D2 = 8 and D3 = 8.
It follows that 1 − u is a concave function. It has stationary point (x, y, z) = (0, 0, 0) by the
calculation in b). This point is therefore a global maximum for w = 1 − u, with maximum
value w = 1−u(0, 0, 0) = 1−0 = 1. Finally, it follows that f(x, y, z) = ew = e1−u has a global
maximum at (x, y, z) = (0, 0, 0) with maximum value f = e1 = e.

Question 4.

(a) The boundary of the set of R of admissible points is given by the equations 4x2 + 9y2 = 36
and 2x + 3y = 6. The graph of the linear equation is the straight line y = 2 − x/3, and the
quadratic equation is the equation of an ellipse with center in the origin and half-axis 3 (in
the x-direction) and 2 (in the y-direction). The region R of admissible points is the region
bounded by these two curves, above the straight line and inside the ellipse, and is shown in
the figure below. It is clear from the figure that R is bounded, since 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2.
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x

y

(b) We write the Kuhn-Tucker problem in standard form as

max f(x, y) = xy subject to

{
4x2 + 9y2 ≤ 36

−(2x+ 3y) ≤ −6

It has Lagrangian L = xy−λ1(4x2 + 9y2) +λ2(2x+ 3y). The first order conditions (FOC) are

L′x = y − λ1 · 8x+ 2λ2 = 0

L′y = x− λ1 · 18y + 3λ2 = 0

the constraints (C) are given by 4x2 + 9y2 ≤ 36 and 2x + 3y ≥ 6, and the complementary
slackness conditions (CSC) are given by

λ1, λ2 ≥ 0 and λ1(4x
2 + 9y2 − 36) = λ2(2x+ 3y − 6) = 0

The FOC’s is a linear system with variables x, y and parameters λ1, λ2, with augmented matrix(
−8λ1 1 −2λ2

1 −18λ1 −3λ2

)
When λ1 = 1/12, it becomes(

−2/3 1 −2λ2
1 −3/2 −3λ2

)
⇒

(
1 −3/2 −3λ2
0 0 −4λ2

)
This linear system is only consistent if λ2 = 0, and in this case we have x − 3y/2 = 0, or
x = 3y/2. Since λ1 = 1/12 > 0, the CSC give

4x2 + 9y2 = 4(3y/2)2 + 9y2 = 18y2 = 36

This means that y2 = 2 and y = ±
√

2 and x = ±3
√

2/2. We find the two solutions

(x, y;λ1, λ2) = (3
√

2/2,
√

2; 1/12, 0), (−3
√

2/2,−
√

2; 1/12, 0)

with λ1 = 1/12. Finally, we check the second constraint 2x + 3y ≥ 6, and see that only
the first point satisfy it. Therefore, the Kuhn-Tucker conditions have a unique solution with
λ1 = 1/12:

(x, y;λ1, λ2) = (3
√

2/2,
√

2; 1/12, 0)

(c) We attempt to use the Second Order Condition (SOC) at the point found in b). We get the
Lagrangian

L = xy − 1

12

(
4x2 + 9y2

)
since λ1 = 1/12 and λ2 = 0. The Hessian becomes

H(L) =

(
−8/12 1

1 −18/12

)
=

(
−2/3 1

1 −3/2

)
We have leading principal minors D1 = −2/3 < 0 and D2 = 0, and the other first order
principal minor is ∆1 = −3/2 < 0. It follows that H(L) is negative semidefinite (at all points)
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and that L therefore is a concave function. From the (SOC) it follows that (x, y) = (3
√

2/2,
√

2)
is a global maximum point, with maximum value f = 3

√
2/2 ·

√
2 = 3.
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