
Solutions Final exam in GRA 6035 Mathematics
Date January 6th, 2017 at 1200 - 1500

Question 1.

(a) The determinant of A is

det(A) =

∣∣∣∣∣∣
−1 1 −1
−1 0 0
0 −1 1

∣∣∣∣∣∣ = 1(1− 1) = 0

This means that rk(A) < 3, and since at least one of the 2-minors are non-zero, for instance∣∣∣∣−1 1
−1 0

∣∣∣∣ = 1 6= 0

it follows that rk(A) = 2.
(b) The linear system Ax = 0 has one free variables since A has rank two, and we compute the

solutions using Gaussian elimination:−1 1 −1
−1 0 0
0 −1 1

 →

−1 1 −1
0 −1 1
0 −1 1

 →

−1 1 −1
0 −1 1
0 0 0


This means that z is free, y = z and x = y− z = 0, and the solutions to the linear system can
be written in the form

x =

xy
z

 =

0
z
z

 = z

0
1
1

 = z · v1, with v1 =

0
1
1


That is, the solutions are the vectors in span(v1).

(c) To check if A is diagonalizable, we compute the eigenvalues of A, given by the characteristic
equation det(A− λI) = 0: ∣∣∣∣∣∣

−1− λ 1 −1
−1 −λ 0
0 −1 1− λ

∣∣∣∣∣∣ = 0

This gives the equation

(−1− λ)(−λ(1− λ)) + 1(1− λ− 1) = 0

which gives, after multiplication, that

−λ(λ2 − 1)− λ = −λ(λ2 − 1 + 1) = −λ3 = 0

The eigenvalues are therefore λ = 0 (with multiplicity three). The linear system that gives
the eigenvectors for λ = 0, is given by

(A− 0 · I)x = 0

and since A has rank two, Ax = 0 has just one free variable. Since the multiplicity of λ = 0
is three, this means that A is not diagonalizable.

Question 2.

(a) The differential equation y′′− 3y′− 10y = 20 is second order linear, with solution y = yh + yp.
The homogeneous equation y′′ − 3y′ − 10y = 0 has characteristic equation r2 − 3r − 10 = 0,
with solutions r = 5 and r = −2. Therefore, the general solution is

yh = C1 · e5t + C2 · e−2t

Since the right hand side f(t) = 20 is a constant, we guess a constant solution yp = A, which
gives y′ = y′′ = 0 and −10A = 20, with solution A = −2. Therefore, the general solution is

y = yh + yp = C1 · e5t + C2 · e−2t − 2
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(b) The differential equation y′ + ln(t) = y ln(t) is linear and separable since it can be written
y′ − ln(t)y = − ln(t) or as y′ = (y − 1) ln t. We solve it as a separable differential equation
y′ = (y − 1) ln(t), which gives

1

y − 1
y′ = ln(t) ⇒

∫
1

y − 1
dy =

∫
ln(t) dt

Using integration by parts with u′ = 1 and v = ln t to compute the last integral, we get

ln |y − 1| = t ln t− t+ C ⇒ |y − 1| = et ln t−t · eC

This implies that y − 1 = Ket ln t−t with K = ±ec, or that

y = Ket ln t−1 + 1

If we would solve it as a linear differential equation y′−ln(t)y = − ln(t) instead, the integrating
factor u would be given by∫

− ln(t)dt = −t ln t+ t+ C ⇒ u = e−t ln t+t

which gives

ye−t ln t+t =

∫
− ln(t)e−t ln t+tdt =

∫
eudu = eu + C = e−t ln t+t + C

with the substitution u = −t ln t+ t, du = − ln(t)dt. This would give

y = 1 + Cet ln t−t

(c) We try to solve the differential equation 6t(y2− t2)2 = 6y(y2− t2)2 · y′ as an exact differential
equation. We write it in the form 6t(y2− t2)2− 6y(y2− t2)2 · y′ = 0, and try to find a function
h = h(y, t) such that

h′t = 6t(y2 − t2)2, h′y = −6y(y2 − t2)2

From the first equation, it follows that h = −(y2 − t2)3 + C(y), since the derivative (−u3)′t =
−3u2 · u′t with u = y2 − t2 and u′t = −2t. We check the second equation, and compute

h′y = −3u2 · u′y = −3(y2 − t2)2 · 2y + C ′(y)

Therefore h = −(y2− t2)3 +C(y) is a solution to both equations if C ′(y) = 0, and the simplest
solution to this is C(y) = 0. We therefore have that

h(y, t) = −(y2 − t2)3 = K ⇒ (y2 − t2)3 = −K
The initial condition y(0) = 1 gives 1 = −K, or K = −1. Hence the solution is

y2 − t2 =
3
√

1 = 1 ⇒ y =
√
t2 + 1

Notice that that we can exclude the possibility y = −
√
t2 + 1 as this would give y(0) = −1.

Question 3.

(a) To find out if f(x, y, z) = −3− 2x2 + 2xy − 2xz − 2y2 + 4yz − 2z2 is convex, we compute its
first order partial derivatives

f ′x = −4x+ 2y − 2z, f ′y = 2x− 4y + 4z, f ′z = −2x+ 4y − 4z

and its Hessian matrix

H(f) =

−4 2 −2
2 −4 4
−2 4 −4


The leading principal minors are D1 = −4, D2 = 12 and D3 = −4 · 12 − 4(−12) − 2(0) = 0.
We have used cofactor expansion along the last row to compute D3. We see that the Hessian
H(f) may be negative semidefinite, and we must check if all principal minors ∆i ≥ 0 to verify
this. We compute that ∆1 = −4,−4,−4 < 0, ∆2 = 12, 12, 0 ≥ 0 and ∆3 = 0. Hence H(f) is
negative semidefinite, and f is concave. Since D1 < 0, H(f) is not positive semidefinite, so f
is not convex.
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(b) The stationary points of f are the solutions of the first order conditions, given by

f ′x = −4x+ 2y − 2z = 0, f ′y = 2x− 4y + 4z = 0, f ′z = −2x+ 4y − 4z = 0

This is a linear system, and we solve it using Gassian elimination:−4 2 −2
2 −4 4
−2 4 −4

 →

−2 1 −1
0 −3 3
0 3 −3

 →

−2 1 −1
0 −3 3
0 0 0


We have divided the last row by 2, to simplify computations. We see that z is a free variable,
that y = z and that −2x = −y + z = 0, which gives x = 0. Therefore, there are infinitely
many stationary points, given by (x, y, z) = (0, z, z). Since f is concave, all these stationary
points are maxima, with maximum value f(0, z, z) = −3.

(c) Since g(w) = 6/w has derivative g′(w) = −6/w2 and w = f(x, y, z) ≤ −3 is negative (since
−3 is the maximal value of f), it follows that g is a decreasing function of w. Therefore, the
maximum of f gives a minimum of g. It follows that the minimum of g is obtained at the
points (0, z, z) with minimum value g(0, z, z) = 6/f(0, z, z) = 6/(−3) = −2. The function g
has no maximum value, as this would correspond to minimum values of f , which does not
exist. For example, when y = z = 0, we have that

g(x, 0, 0) =
6

f(x, 0, 0)
=

6

−3− x2
→ 0 when x→∞

Hence g(x, y, z) < 0 for all x, y, z, and g takes values arbitrary close to 0, and g does not have
a maximal value.

Question 4.

(a) The standard form of the Kuhn-Tucker problem is

max −3− 2x2 + 2xy − 2xz − 2y2 + 4yz − 2z2 subject to − x− y + z ≤ −2

The Lagrangian is L = −3 − 2x2 + 2xy − 2xz − 2y2 + 4yz − 2z2 − λ(−x − y + z). The first
order conditions (FOC) are

L′x = −4x+ 2y − 2z + λ = 0

L′y = 2x− 4y + 4z + λ = 0

L′y = −2x+ 4y − 4z − λ = 0

the constraint (C) is given by x+ y − z ≥ 2, and the complementary slackness conditions are
given by λ ≥ 0 and λ(x+ y − z − 2) = 0.

(b) To find candidate points for maximum, we solve the Kuhn-Tucker conditions. In the case
x+ y − z > 2, we have that λ = 0, and this gives the linear system

−4x+ 2y − 2z = 0

2x− 4y + 4z = 0

−2x+ 4y − 4z = 0

with solution (x, y, z) = (0, z, z) with z as a free variable from Question 3. At these points,
x+y−z = 0+z−z = 0, so the constraint x+y−z > 2 does not hold. There are no candidate
points in this case. In the case when x+ y − z = 2, we get the linear system

x+ y − z = 2

−4x+ 2y − 2z + λ = 0

2x− 4y + 4z + λ = 0

−2x+ 4y − 4z − λ = 0

We use Gaussian elimination to solve this system, and get
1 1 −1 0 2
−4 2 −2 1 0
2 −4 4 1 0
−2 4 −4 −1 0

 →


1 1 −1 0 2
0 6 −6 1 8
0 −6 6 1 −4
0 0 0 0 0

 →


1 1 −1 0 2
0 6 −6 1 8
0 0 0 2 4
0 0 0 0 0


3



This shows that there are infinitely many solutions to the Kuhn-Tucker conditions, with z
free. Moreover, we see that λ = 2, that 6y = 6z − 2 + 8 = 6z + 6, which gives y = z + 1, and
that x = −y + z + 2 = −(z + 1) + z + 2 = 1. In other words, the solutions are

(x, y, z;λ) = (1, z + 1, z; 2)

for any value of z. We choose one of the these points, for example the point (1, 1, 0; 2) with
z = 0, and use the SOC: The Lagrangian

L(x, y, z; 2) = −3− 2x2 + 2xy − 2xz − 2y2 + 4yz − 2z2 − 2(−x− y + z)

has the same Hessian matrix as f in Question 3a). It follows that L is a concave function, and
therefore (1, 1, 0) is a maximum point with maximum value f(1, 1, 0) = −5. Any of the other
solutions (x, y, z) = (1, z + 1, z) of the Kuhn-Tucker conditions is also a maximum point with
f(1, z + 1, z) = −5, since it gives the same Lagrangian.

(c) We consider the Kuhn-Tucker problem max f(x, y, z) subject to ax+y−z ≥ 2, with constraint
−ax − y + z ≤ −2 in standard form. We know by b) that for a = 1, it has maximum value
f∗(1) = −5 obtained at the point (x∗(1), y∗(1), z∗(1);λ∗(1)) = (1, z+ 1, z; 2). The Lagrangian
of the Kuhn-Tucker problem with parameter a is

L = −3− 2x2 + 2xy − 2xz − 2y2 + 4yz − 2z2 − λ(−ax− y + z)

with ∂L/∂a = λx. The relevant Envelope Theorem is that

df∗(a)

da
= L′a(x∗(a), y∗(a), z∗(a);λ∗(a)) = λ∗(a) · x∗(a)

for values of the parameter a such that a maximum is obtained at (x∗(a), y∗(a), z∗(a);λ∗(a)),
a solution of the Kuhn-Tucker conditions. This is the case for all values of a close to 1, and it
implies that

f∗(1.12) ∼= f∗(1) + 2 ·∆a = −5 + 2 · (0.12) = −5 + 0.24 = −4.76

by the Envelope Theorem since λ∗(1) · x∗(1) = 2 · 1 = 2. In fact, for all a > −1, we find the
solutions of the Kuhn-Tucker conditions by replacing the linear system in b) with the linear
system 

a 1 −1 0 2
−4 2 −2 1 0
2 −4 4 1 0
−2 4 −4 −1 0

 →


−2 4 −4 −1 0
−4 2 −2 1 0
2 −4 4 1 0
a 1 −1 0 2


We have swapped the first and last row, and this gives the echelon form

→


−2 4 −4 −1 0
0 −6 6 3 0
0 0 0 0 0
0 1 + 2a −1− 2a −a/2 2

 →


−2 4 −4 −1 0
0 −1 1 1/2 0
0 0 0 1 + a 4
0 0 0 0 0


We see that there is an infinite number of solutions (x∗(a), y∗(a), z∗(a);λ∗(a)) with λ∗(a) > 0,
and with z as a free variable. By the SOC, these solutions are maxima since the Lagrangian

L = −3− 2x2 + 2xy − 2xz − 2y2 + 4yz − 2z2 − 4

1 + a
(−ax− y + z)

is a concave function (it has the same Hessian as the Lagrangian in b).

Question 5.

To compute the eigenvalues of A, we solve the characteristic equation given by

|A− λI| =

∣∣∣∣∣∣
−α2 − λ α1 0
−α3 −λ α1

0 −α3 α2 − λ

∣∣∣∣∣∣ = 0
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The determinant on the right hand side can be computed using cofactor expansion along the first
column:

|A− λI| = (−α2 − λ)(−λ(α2 − λ) + α1α3) + α3(α1(α2 − λ))

= −(λ+ α2)(λ
2 − α2λ+ α1α3) + α1α2α3 − α1α3λ

= −λ3 + (α2
2 − 2α1α3)λ = −λ(λ2 − (α2

2 − 2α1α3))

Therefore, the characteristic equation gives that λ = 0 or that λ2 = α2
2 − 2α1α3. Let us write

∆ = α2
2 − 2α1α3

If ∆ > 0, then λ = 0 and λ = ±
√

∆ are the three distinct eigenvalues of A. In this case A is
diagonalizable. If ∆ < 0, then λ = 0 is the only eigenvalue of A (with multiplicity one) and A is not
diagonalizable. If ∆ = 0, then λ = 0 is the only eigenvalue of A, with multiplicity three, and A is
only diagonalizable if A = 0, that is, if α1 = α2 = α3 = 0. We conclude that A is diagonalizable if
and only if α2

2 − 2α1α3 > 0 or α1 = α2 = α3 = 0.
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