
Solutions Final exam in GRA 6035 Mathematics
Date June 20th, 2017 at 0900 - 1200

Question 1.

(a) When a = −5, the determinant of A is

det(A) =

∣∣∣∣∣∣
−4 2 2
2 −4 2
2 2 −4

∣∣∣∣∣∣ = −4(16− 4)− 2(−8− 4) + 2(4 + 8) = −48 + 24 + 24 = 0

This means that rkA < 3, and since there is a non-zero 2-minor, for example

D2 =

∣∣∣∣−4 2
2 −4

∣∣∣∣ = 12 6= 0

it follows that rk(A) = 2.
(b) When a = −5, the linear system Ax = 0 has 3− rk(A) = 3− 2 = 1 free variables. Therefore,

the solutions can be written in the form span(v) for a single vector v. We compute the
solutions using Gaussian elimination:−4 2 2

2 −4 2
2 2 −4

 →

 2 −4 2
−4 2 2
2 2 −4

 →

2 −4 2
0 −6 6
0 6 −6

 →

2 −4 2
0 −6 6
0 0 0


We have not written the last column corresponding to b = 0. The echelon form gives that z
is free, that −6y + 6z = 0, or y = z, and that 2x − 4y + 2z = 2x − 2z = 0, or x = z. The
solutions to the linear system can be written in the form

x =

xy
z

 =

zz
z

 = z · v with v =

1
1
1


(c) We have that rk(A) < 3 if and only if det(A) = 0, and the determinant of A is given by

det(A) =

∣∣∣∣∣∣
1 + a 2 2

2 1 + a 2
2 2 1 + a

∣∣∣∣∣∣
= (1 + a)((1 + a)2 − 4)− 2(2(1 + a)− 4) + 2(4− 2(1 + a))

= (1 + a)(a2 + 2a− 3)− 2(2a− 2) + 2(2− 2a)

= (1 + a)(a+ 3)(a− 1)− 4(a− 1)− 4(a− 1) = (a− 1)((a+ 1)(a+ 3)− 8)

= (a− 1)(a2 + 4a− 5) = (a− 1)(a− 1)(a+ 5) = (a− 1)2 · (a+ 5)

Hence rk(A) < 3 for a = 1 and a = −5, and rkA = 3 otherwise. We have that rk(A) = 2
when a = −5 from (a) and we see that rk(A) = 1 for a = 1 since all three rows in A are equal
in this case. It follows that rk(A) = 2 if and only if a = −5.

(d) Since A is symmetric, it is diagonalizable, and we find D by computing the eigenvalues of A,
given by the characteristic equation det(A− λI) = 0:∣∣∣∣∣∣

1 + a− λ 2 2
2 1 + a− λ 2
2 2 1 + a− λ

∣∣∣∣∣∣ = 0

Notice that the determinant on the left-hand side is the determinant of the matrix A with
parameter b = a − λ instead of a. The computation of det(A) in (a) therefore gives the
characteric equation

(b− 1)2 · (b+ 5) = 0 ⇔ (a− λ− 1)2(a− λ+ 5) = 0
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Hence the eigenvalues are given by a−λ−1 = 0, or λ = a−1, and a−λ+ 5 = 0, or λ = a+ 5.
The eigenvalue λ = a− 1 has multiplicity two. It follows that

D =

a− 1 0 0
0 a− 1 0
0 0 a+ 5



Question 2.

(a) The differential equation y′′ + y′ − 6y = 36t is second order linear, with solution y = yh + yp.
The homogeneous equation y′′ + y′ − 6y = 0 has characteristic equation r2 + r − 6 = 0, with
solutions r = 2 and r = −3. Therefore, the general solution is

yh = C1 · e2t + C2 · e−3t

Since the right hand side f(t) = 36t is linear, we guess a linear solution yp = At + B, which
gives y′ = A and y′′ = 0. This gives A− 6(At+B) = 36t, or −6A = 36 and A− 6B = 0, with
solution A = −6 and B = −1. Therefore, the general solution is

y = yh + yp = C1 · e2t + C2 · e−3t − 6t− 1

(b) The differential equation ty′ − y = ln(t) is linear, since it can be written y′ − (1/t)y = ln(t)/t.
We solve it as a linear differential equation and find the integration factor u given by∫

−1

t
dt = − ln(t) + C ⇒ u = e− ln t = eln(t

−1) = t−1 = 1/t

Multiplication with u in the differential equation gives

(uy)′ =
ln t

t
· u =

ln t

t2
⇒ y =

1

u
·
∫

ln t

t2
dt = t ·

∫
ln t

t2
dt

We use integration by parts with u′ = 1/t2 and v = ln t to compute the last integral, and get∫
ln t

t2
dt = −1

t
ln(t)−

∫ (
−1

t

)
· 1

t
dt = − ln t

t
− 1

t
+ C

This implies that the general solution is

y = t

(
− ln t

t
− 1

t
+ C

)
= − ln t− 1 + Ct

(c) We try to solve the differential equation as an exact differential equation, and rewrite it to the
form

p(t, y) + q(t, y) · y′ =
(
y − 2t

ty − t2
− 1

)
+

(
t

ty − t2

)
· y′ = 0

and try to find a function h = h(t, y) such that h′t = p and h′y = q. Since (ty − t2)′t = y − 2t

and (ty − t2)′y = t, we see that

h(t, y) = ln(ty − t2)− t
is a solution, and the equation is exact. This gives

h(t, y) = ln(ty − t2)− t = C ⇒ ln(yt− t2) = C + t ⇒ yt− t2 = eC+t = eC · et

With K = eC , this gives yt = Ket + t2, and therefore that

y =
Ket + t2

t
=
Ket

t
+ t

is the general solution of the differential equation. Finally, we check if the differential equation
is linear, and multiply it with the denominator ty − t2 and rewrite it as

(y − 2t) + ty′ = ty − t2 ⇒ ty′ + (1− t)y = 2t− t2 ⇒ y′ +
1− t
t
· y =

2t− t2

t

This shows that the equation is linear. It is possible to solve it as a linear equations, using
the integration factor u = te−t, and we would obtain the same result as above.
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Question 3.

(a) To determine whether f(x, y, z) = 9−x2− y2− z2 + 2xz is concave, we compute its first order
partial derivatives

f ′x = −2x+ 2z, f ′y = −2y, f ′z = −2z + 2x

and its Hessian matrix

H(f) =

−2 0 2
0 −2 0
2 0 −2


The leading principal minors are D1 = −2, D2 = 4 and D3 = 0. We have used cofactor
expansion along the middle row to compute D3. We see that the Hessian H(f) may be
negative semidefinite, and we must check all principal minors ∆i to verify this. We compute
that ∆1 = −2,−2,−2 < 0, ∆2 = 4, 0, 4 ≥ 0 and ∆3 = 0. Hence H(f) is negative semidefinite,
and f is concave. Any stationary point is therefore a global maximum point, and we see from
the first order conditions that (x, y, z) = (0, 0, 0) is one stationary point. In fact, we can solve
the FOC’s, and find that y = 0 and x = z, so all points of the form (z, 0, z) are stationary
points. The maximum value of f is f(0, 0, 0) = 9.

(b) We have that g(x, y, z) = ln(10 − f(x, y, z)) = ln(1 + x2 + y2 + z2 − 2xz) = ln(u) with
u = 1 + x2 + y2 + z2 − 2xz. That stationary points of g is given by

g′x =
1

u
· u′x =

1

u
· (2x− 2z) = 0

g′y =
1

u
· u′y =

1

u
· (2y) = 0

g′z =
1

u
· u′z =

1

u
· (2z − 2x) = 0

Since fmax = 9, we have that f(x, y, z) ≤ 9 and therefore that u(x, y, z) ≥ 10 − 9 = 1. This
means that 1/u > 0, and the stationary points are given by x = z and y = 0. Therefore, the
stationary points of g are the points (x, y, z) = (z, 0, z) with z free.

(c) Since u ≥ 1 and ln(u) is an increasing function, it follows that g(x, y, z) = ln(u) ≥ ln(1) = 0,
and g(z, 0, z) = 0 for the stationary points of g. Hence w = 0 is the minimal value of g. To
determine whether g has a maximal value, let for instance x = z = 0. Then

g(x, y, z) = ln(1 + x2 + y2 + z2 − 2xz) = ln(1 + y2)→∞

when y → ∞. Therefore, g has no maximal value, and the interval of possible values of g is
given by Vg = [0,∞).

Question 4.

(a) The standard form of the Kuhn-Tucker problem is

max 9− x2 − y2 − z2 + 2xz subject to − x− y + z ≤ −2

The Lagrangian is L = 9 − x2 − y2 − z2 + 2xz − λ(−x − y + z). The first order conditions
(FOC) are

L′x = −2x+ 2z + λ = 0

L′y = −2y + λ = 0

L′y = 2x− 2z − λ = 0

the constraint (C) is given by x+ y − z ≥ 2, and the complementary slackness conditions are
given by λ ≥ 0 and λ(x+ y − z − 2) = 0.

(b) To find candidate points for maximum, we solve the Kuhn-Tucker conditions. In the case
x + y − z > 2, we have that λ = 0, and from the FOC’s, this gives y = 0 and x = z. The
constraint x + y − z > 2 gives 0 > 2, a contraction, so there are no candidate points with
x + y − z > 2. If x + y − z = 2, then the FOC’s give λ = 2y (from the middle one) and
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2x− 2y+ 2z = 0 (from the first and last). Combined with the constraint, this gives the linear
system

x+ y − z = 2

2x− 2y + 2z = 0

with solution (x, y, z) = (1 + z, 1, z) with z as a free variable, using Gaussian elimination: We
add −2 times the first row to the second to obtain an echelon form with −4y = −4, which
gives y = 1, and x = 1 + z. This gives the candidate point (x, y, z;λ) = (1 + z, 1, z; 2) with
function value f(1 + z, 1, z) = 7. As f is concave from Question 3, it follows from the SOC
that the maximum value is f = 7 (since L is also concave when the constraint is linear).

(c) If we replace f with fa with a > 0, then f is still concave with Hessian matrix

H(fa) =

−2 0 2
0 −2a 0
2 0 −2


where ∆1 = −2,−2a− 2 < 0, ∆2 = 4a, 0, 4a ≥ 0, ∆3 = 0. This implies that La = fa − λ(x+
y− z) is also concave, since the constraint is linear. There is still a candidate point where the
constraint is binding, since we get the linear system

x+ y − z = 2

2x− 2ay + 2z = 0

from the constraint and the FOC’s, and this system has solutions. It follows from the SOC
that the new Kuhn-Tucker problem has a maximum value f∗(a) for a > 0. Using the Envelope
Theorem, we get that

df∗(a)

da
=

∂

∂a
L(ax∗(a), y∗(a), z∗(a);λ∗(a)) = −y∗(a)2

and this derivative is equal to −1 at a = 1 since y∗(a) = 1 from (b). We therefore estimate
the new maximum value to be

f∗(1.25) ∼= f∗(1) + 0.25 · (−1) = 6.75

since ∆a = 1.25− 1 = 0.25.
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