Solutions Final exam in GRA 6035 Mathematics
Date June 20th, 2017 at 0900 - 1200

QUESTION 1.

(a) When a = —5, the determinant of A is

—4 2 2
det(A)=|2 —4 2|=-4(16—4)—2(-8—4)+2(4+8)=-48+24+24=0
2 2 —4

This means that rk A < 3, and since there is a non-zero 2-minor, for example

DZZ‘—4 2

) _4‘:127&0

it follows that rk(A) = 2.

(b) When a = —5, the linear system Ax = 0 has 3 —rk(A) = 3 — 2 =1 free variables. Therefore,
the solutions can be written in the form span(v) for a single vector v. We compute the
solutions using Gaussian elimination:

-4 2 2 2 -4 2 2 -4 2 2 -4 2
2 -4 2 — -4 2 2 — 0 -6 6 — 0 -6 6
2 2 -4 2 2 -4 0 6 —6 0 0 O

We have not written the last column corresponding to b = 0. The echelon form gives that z
is free, that —6y + 62 = 0, or y = 2, and that 2z — 4y + 22 = 20 — 22 = 0, or x = z. The
solutions to the linear system can be written in the form

T z 1
x=|y|=1|z]|=2-v with v=1{1
z z 1

(c) We have that rk(A) < 3 if and only if det(A) = 0, and the determinant of A is given by

l4+a 2 2
det(A)=| 2 14a 2
2 2 1+a
=(1+a)((14+a)?—-4)—2201+a) —4)+2(4—-2(1+a))
= (14 a)(a®+2a —3) — 2(2a — 2) + 2(2 — 2a)
=(14+a)(a+3)(a—1)—4(a—1)—4(a—1)=(a—1)((a+1)(a+3) —8)
=(a—1)(a®>+4a—5)=(a—1)(a—1)(a+5) = (a—1)%-(a+5)

Hence 1k(A) < 3 for @ = 1 and a = —5, and rk A = 3 otherwise. We have that rk(A4) = 2
when a = —5 from (a) and we see that rk(A) = 1 for a = 1 since all three rows in A are equal
in this case. It follows that rk(A) = 2 if and only if a = —5.

(d) Since A is symmetric, it is diagonalizable, and we find D by computing the eigenvalues of A,
given by the characteristic equation det(A — AI) = 0:

1+a— A\ 2 2
2 14+a— M\ 2 =0
2 2 1+a— X\

Notice that the determinant on the left-hand side is the determinant of the matrix A with
parameter b = a — A instead of a. The computation of det(A) in (a) therefore gives the
characteric equation

b-—12-b+5)=0 < (a—A—1%*(a—X+5)=0
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Hence the eigenvalues are given bya—A—1=0,or A\=a—1,anda—A+5=0,0or A =a+5.
The eigenvalue A = a — 1 has multiplicity two. It follows that

a—1 0 0
D = 0 a—1 0
0 0 a+5

QUESTION 2.

The differential equation y” + y’ — 6y = 36t is second order linear, with solution y = yp, + y,.
The homogeneous equation y” + 3’ — 6y = 0 has characteristic equation 72 +r — 6 = 0, with
solutions 7 = 2 and r = —3. Therefore, the general solution is

yp=C1 - et +Cy - e 3t

Since the right hand side f(t) = 36t is linear, we guess a linear solution y, = At + B, which
gives ¢/ = A and y” = 0. This gives A — 6(At + B) = 36t, or —6A = 36 and A — 6B = 0, with
solution A = —6 and B = —1. Therefore, the general solution is

y=yn+yp=C1-e* +Cy-e? —6t—1

The differential equation ty’ — y = In(¢) is linear, since it can be written vy’ — (1/t)y = In(t)/t.
We solve it as a linear differential equation and find the integration factor u given by

1 _

Multiplication with « in the differential equation gives

Int Int 1 Int Int
- _ = — = — . _— = . _—
(uy)' = U= = g " / 2 dt =t 2 dt

We use integration by parts with ' = 1/t? and v = Int to compute the last integral, and get

Int 1 1 1 Int 1
2= ——m@)— [ (—=) cat=-L_21¢
/t2 7 n(®) /( t> ¢ T

This implies that the general solution is
yzt(——+C> = —Int—1+Ct

We try to solve the differential equation as an exact differential equation, and rewrite it to the

form
y—2t t ,
t, ty) -y = -1 — |-y =0
p(t,y) +q(t,y) -y (ty—tQ )+<ty_t2> y

and try to find a function h = h(t,y) such that hy = p and hy = ¢. Since (ty — t2), =y —2t
and (ty — %)), = t, we see that

h(t,y) = In(ty — t*) — ¢t
is a solution, and the equation is exact. This gives
hit,y) =In(ty —t?) =t =C = In(yt—t)=C+t = yt—t>=e"Tt=¢". ¢
With K = €©, this gives yt = Ke! + t2, and therefore that
Ke! 4 2 - Ket
t t

is the general solution of the differential equation. Finally, we check if the differential equation
is linear, and multiply it with the denominator ty — t? and rewrite it as

1—t 2t — 2
(y—2)+ty =ty —t* = ty+(1—-tly=2t—t> = oy + Y=
This shows that the equation is linear. It is possible to solve it as a linear equations, using

the integration factor u = te™*, and we would obtain the same result as above.
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QUESTION 3.

To determine whether f(z,y,2) =9 — 2% —y? — 22 + 222z is concave, we compute its first order
partial derivatives
fr=—2x+ 2z, fé =2y, fl=-22+2

and its Hessian matrix

-2 0 2
Hfy=10 -2 0
2 0 -2
The leading principal minors are D; = —2, Dy = 4 and D3 = 0. We have used cofactor

expansion along the middle row to compute Ds. We see that the Hessian H(f) may be
negative semidefinite, and we must check all principal minors A; to verify this. We compute
that Ay = —2,-2,-2 <0, Ap =4,0,4 > 0 and Ag = 0. Hence H(f) is negative semidefinite,
and f is concave. Any stationary point is therefore a global maximum point, and we see from
the first order conditions that (z,y, z) = (0,0, 0) is one stationary point. In fact, we can solve
the FOC’s, and find that y = 0 and x = z, so all points of the form (z,0,z) are stationary
points. The maximum value of f is f(0,0,0) = 9.

We have that g(z,y,2) = In(10 — f(z,y,2)) = In(1 + 2% + y? + 22 — 222) = In(u) with
uw=1+ 2%+ y? + 22 — 222z. That stationary points of g is given by

1 1
g;;:a-u;:a(%—%):o
1 1
= ==.(29)=0
9y =7, Uy = (2y)
1 1
g,’zzﬂ-ulzza-(szQx):()

Since fmax = 9, we have that f(z,y,z) < 9 and therefore that u(z,y,z) > 10 — 9 = 1. This
means that 1/u > 0, and the stationary points are given by z = z and y = 0. Therefore, the
stationary points of g are the points (z,y, z) = (2,0, z) with z free.

Since u > 1 and In(u) is an increasing function, it follows that g(x,y, z) = In(u) > In(1) = 0,
and ¢(z,0,z) = 0 for the stationary points of g. Hence w = 0 is the minimal value of g. To
determine whether g has a maximal value, let for instance x = z = 0. Then

g(z,y,z) =In(1 + 22 + y° + 22 — 222) = In(1 4+ »?) = 0

when y — oo. Therefore, g has no maximal value, and the interval of possible values of g is
given by V, = [0, 00).

QUESTION 4.

The standard form of the Kuhn-Tucker problem is
max 9—x2—y2—z2+2xz subject to —x —y+2 < -2

The Lagrangian is £ = 9 — 22 — y? — 22 4+ 2x2 — A\(—x — y + 2). The first order conditions
(FOC) are

L=-20+2:24A=0
E;:—2y+/\20
E;:2x—22—A:O

the constraint (C) is given by = + y — z > 2, and the complementary slackness conditions are

given by A\ >0 and AN(z +y—2—2) =0.

To find candidate points for maximum, we solve the Kuhn-Tucker conditions. In the case

x+y— 2z > 2, we have that A = 0, and from the FOC’s, this gives y = 0 and x = 2. The

constraint x +y — z > 2 gives 0 > 2, a contraction, so there are no candidate points with

x+y—2z>2 Ifxr+4+y—z =2 then the FOC’s give A = 2y (from the middle one) and
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2z — 2y + 2z = 0 (from the first and last). Combined with the constraint, this gives the linear
system

rT+y—z2=2
20 =2y +22=0

with solution (z,y,2) = (1+ 2, 1, z) with z as a free variable, using Gaussian elimination: We
add —2 times the first row to the second to obtain an echelon form with —4y = —4, which
gives y = 1, and = 1 + z. This gives the candidate point (x,y,z;\) = (1 + 2,1, 2;2) with
function value f(1+ z,1,2) = 7. As f is concave from Question 3, it follows from the SOC
that the maximum value is f = 7 (since £ is also concave when the constraint is linear).

If we replace f with f, with a > 0, then f is still concave with Hessian matrix

—2 0 2
Hf)=[0 -2a o0
2 0 -2

where Ay = -2, —2a — 2 < 0, Ay = 4a,0,4a > 0, Az = 0. This implies that £, = fo, — Mz +
y — z) is also concave, since the constraint is linear. There is still a candidate point where the
constraint is binding, since we get the linear system

T+y—z2=2
20 —2ay +22=0
from the constraint and the FOC’s, and this system has solutions. It follows from the SOC

that the new Kuhn-Tucker problem has a maximum value f*(a) for @ > 0. Using the Envelope
Theorem, we get that

df*(a) - 0 (% * * Ly k _ * 2

da - %Eax (a)7y (CL),Z (a)vA (a’)) =Yy (CL)

and this derivative is equal to —1 at a = 1 since y*(a) = 1 from (b). We therefore estimate
the new maximum value to be

fr(1.25) = f*(1) +0.25- (1) = 6.75
since Aa =1.25 — 1 = 0.25.
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