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Solutions Final exam in GRA 6035 Mathematics
Date November 29th, 2017 at 0900 - 1200

QUESTION 1.

The matrix A, and an echelon form of A, is given by

1 0 0 0 100 0
Ao 3 -2 01 3 —2
0 3 9 —6 000 0
0 -2 —6 4 000 0

We have that rk(A) = 2 since the echelon form has two pivots.

The leading principal minors are D1 = 1, Dy = 1 (by computation), and D3 = 0 and Dy = 0
(since A has rank two, all minors of order three and four are zero). By the RRC (reduced
rank criterion), it follows from the facts that D1, Dy > 0 and that rk(A) = 2 that A is positive
semidefinite. Therefore, f is positive semidefinite. Alternatively, we could have used the signs
of all principal minors

Ay =1,1,9,4
Ay =1,9,4,0,0,0
As =0,0,0,0
Ay=0

to come to the same conclusion.
We solve Ax = 0 using Gaussian elimination, which gives an echelon form of the augmented
matrix of the form

1 0 0 010 10 0 010
o 1 3 =210 013 =210
Ao=1s 3 9 —6lo] ~ fooo0 olo
0 -2 -6 410 0 0O 0
Hence z, w are free variables, z = 0 from the first equation, and y = —3z + 2w from the second

equation. This gives solutions of the form

x 0 0 0
lyl |32t 2w | -3 21 . )
X = = . =z 1 +w 0 =ZzZ:-Vitw-vy
w w 0 1

Hence, the solutions of the linear system is span(vy, vy) when we put

0 0
-3 2
Vl - 1 Y V2 O
0 1

Note that these vectors are not unique; any choice of two linearly independent vectors that
are solutions can be used instead.

QUESTION 2.

The differential equation 3’ — 2y = e’ is linear, and we can solve it using the method of
integrating factor. Since a(t) = —2 and

/—th— —2t+C

it follows that u = e 2

and get

is an integrating factor. We multiply with u in the differential equation,

yl _ 2y) _ e—2t . Ct = (e—Qty)l — e—t
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Therefore, integration on both sides gives
e My = /e_t dt=—e'+C = y=e¥(—e14+0)=—¢+Ce*

It is also possible to solve the differential equation using the superposition principle. Then
Y = Yn + Yp, and yj, is the general solution of y' — 2y = 0, which gives characteristic equation
r—2=0,o0rr =2 and y, = Ce*. The method of undetermined coefficients with y = Ae’
gives
At —2(Ae’) = = A =¢

This gives A = —1 and y, = —¢’, and therefore y = yj, + y, = Ce?’ — ¢’
We try to solve 3t —y — ty’ = 0 as an exact differential equation, and we therefore look for a
function h(t,y) such that

hy =3t —y, hj=—t

The first condition gives h = t3 —ty + C(y) for a function C(y) that is constant in ¢. Inserting
this in the second condition, we get —t + C’(y) = —t. We see that we get a solution if we
choose C(y) = 0. Therefore, the differential equation is exact and has solution

ﬁ—c_ﬁ C

t ot

Alternatively, the differential equation can be solved using integrating factors, since it is linear
and can be written in the form

h=t—ty=C = ty=t2-C = y=

1
ty +y=3t2 = y+¥y:m

The integrating factor is e = ¢, and we would get (ty)" = 3t2, and therefore ty = t3 + K, or
y=1t>+ K/t

The differential equation y' = 2y(3—y) is autonomous, with F'(y) = 2y(3—y). The equilibrium
states are therefore given by

Fly)=2y3—y)=0 = y=0 or y=3
Hence y. = 0 and y. = 3 are the equilibrium states. To determine their stability, we compute
F'(ye). Since F'(y) = (6y — 2y?) = 6 — 4y, we get
F'(0)=6>0, F(3)=-6<0
Therefore, y. = 0 is unstable and y. = 3 is stable by the Stability Theorem. We can also see
this from the phase diagram below, where the arrows show the time development of y = y(t)
as time passes. None of the equilibrium states are globally asymptotically stable, since an
initial value yg < 0 will give a solution curve that moves away from both equilibrium states

as time passes. In fact, since ¢y’ = F(y) = 2y(3 — y) < 0 for y < 0, the solution curve will be
decreasing.

QUESTION 3.

The stationary points of v are given by
ul, = 2z + 4y = 0, u; =4+ 10y —22 =0, —-2y+16z=0

This gives y = 8z from the last equation, x = —2y = —2(8z) = —162z from the first equation,
and therefore 4(—16z) + 10(82) — 2z = 0 from the second equation, or 14z = 0. Thie implies
that z = 0, and (z,y,2) = (0,0,0) is therefore the unique stationary point of u. The Hessian
of u is given by

2 4 0
Hu)=[4 10 —2
0 —2 16

and since Dy = 2, Dy = 20 — 16 = 4 and D3 = 16(4) + 2(—4) = 56 (by cofactor expansion
along the last row), it follows that H(u) is positive definite and that u is a convex function.
Therefore, u(0,0,0) = 1 is the minimum value of u.
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(b) The outer function f(u) = In(u)/u? has derivative

(1/u) - u? — In(u) - 2u _1- 21n(u)

u? u3

fi(w) =

Therefore, the partial derivatives of f are given by

1 —21In(u) 1 —2In(u)

f;:T‘U;—T'(%‘F%)
1-21 1—-21

fl’/—u;l(u)-u;—l;(m-(élx—i—my—%)
1—2In(u 1—2In(u

f,;: ud ( )ulz: ud ( )(—2y+162)

with v = 1 + 22 + 592 + 822 + dxy — 2yz.

(c) From (a) we know that the values of the inner function are v > 1, and from (b) we know that
f(u) = (1 —2Inu)/u? is the derivative of the outer function. This means that f’(u) = 0 for
1—2In(u) =0, or u = e'/? = \/e, that f(u) is increasing for u in [1,/€], and that f(u) is
decreasing for u in [/e,00). When u — oo, we have that f(u) = In(u)/u? — 0. This means
that the maximum and minimum values of f are

Jmax = f(\/é) = QL =~0.184, fumin = f(l) =0

e

since f(y/e) =1/(2e) and f(1) = 0.
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QUESTION 4.

The Lagrangian of the Kuhn-Tucker problem is £ = 2232 — (2% + 32 + 2%y?). The first order
conditions (FOC) are

L= 2xy® — A2z 4 22y%) = 0
r 2 2\ _

L, =2yx® — A2y + 2yx°) = 0
the constraint (C) is given by 2% + 32 + 2%y? < 3, and the complentary slackness conditions
(CSC) are given by

A>0 and ANz®+32+2%5°—3)=0

The Kuhn-Tucker conditions are FOC+C+CSC.
We look at the cases when (i) 22 + 32 + 2%y? = 3 and (ii) 22 + y? + 2%y < 3 separately. In

each case, we find all points (z,y; A) with =,y # 0 that satisfies FOC+C+CSC. We start with
case (i): We write the FOC’s in factorized form:

2x(y? — A1+ y?3) =0
2y(x* — A1+ 2?%)) =0

This means that y?> = A(1 + y?) from the first equation, and that 22 = A(1 4 22) from the
second equation, since we want to find solutions with x,y # 0, and therefore

.%'2 y2

T lta? 14y?
Multiplication with the common denominator (14z2)(1+y?) # 0 gives 22(1+%2) = y?(1+2?),
or 2% 4+ 2%y? = 4% + 2292, and this implies that 22 = 2. When we put this into the constraint,
we get

o _ —2+£VAT12 _ —2+4

P2+’ +2222=3 = 2*+222-3=0 = 2*= 5 >

We get that 22 = 1, or « = +1, or that 2 = —3, which is not possible. Since 2% = 1, we get
A=1/2>0, and 22 = y? means that y?> = 1, or y = +1. Hence we get four candidate points
in case (i) with z,y # 0, given by

(@,y:A) = (£1,£1;1/2)
All these candidate points have f = x2y? = 1. In case (ii), where 22 + 3% + 223? < 3 and
A =0, the FOC’s give 223? = 0 and 222y = 0. This means that = 0 or y = 0, and there are

no candidate points in case (ii) with =,y # 0. In conclusion, the points (x,y; A\) with z,y # 0
that satisfied the Kuhn-Tucker conditions FOC+C+CSC, are

(z,y; A) = (£1,+1;1/2)

shown in the figure below.

L2 + g+ 2Py <3




(c) The set of points (z,y) such that z? + 32 4 22y = 3 is bounded. In fact, 22, y?, 2%y? > 0 and
therefore 22, y2, 22y? < 3, which means that —v/3 < z,y < v/3. By the EVT, the Kuhn-Tucker
problem therefore has a maximum. The possible maximum points are the candidate points
with z,y # 0 found in (b), candidate points with = 0 or y = 0 that satisfy FOC+C+CSC,
and admissible points where NDCQ fails. The candidate points found in (b) have f = 1.
Therefore, possible candidate points with x = 0 or y = 0, where f = 0, cannot be maximum
points. The NDCQ in the case x? + y? + 2%y? = 3 is given by

rk (2:3 +2zy? 2y + 2y:L“2) =1

and it fails if 22 + 22y? = 0 and 2y + 2y2? = 0, which gives 22(1+y?) = 0 and 2y(1 +22) = 0.
Since 1 4 22,1 4 y? > 0, this is the case only at the point = y = 0, and this point does not
satisfy 22 4+ 3% + 22y? = 3. Since there is no NDCQ condition in case 2% + y? + 2%y? < 3,
there are no admissible points where NDCQ fails. We conclude that f = 1 is the maximum
value, and that (x,y; \) = (+1,41;1/2) are the maximum points. As an alternative method,
one may try to use SOC at one of these points, but the corresponding function
1
hiw,y) = L(z,y;1/2) = 2%y = o (a* +y* + 2%?)
is not concave, and the SOC gives no conclusion in this case.

QUESTION 5.

The system of first order linear differential equations can be written in the matrix form y’ = Ay,

where .
_ (5 —6 _(y (Y
a= (1 2) = (1) v=(Y)

To solve the system, we find the eigenvalues and eigenvectors of A. The characateristic equation is
A2 — 3\ — 4 = 0, which gives A\; = —1 and Ay = 4. For A = —1, the eigenvectors are the solutions of

(A+ 1)y =0, with
6 —6
A+1T= <1 _1>

Therefore, y = z with z free. For A = 4, the eigenvectors are the solutions of (A — 4I)y = 0, with

1 —6
(1)

Therefore, y = 6z with z free. If follows that £_; = span(v;) and E4 = span(va) with

=) ==(9

It follows that the general solution of the system is given by

y=Cyvy - et 4+ Cyvy - et = <Z> =

4 et 4 6C5 et
1 e t+ Cy ett



	Question 1. 
	Question 2. 
	Question 3. 
	Question 4. 
	Question 5. 

